Natural Climate Solutions for Maine's Managed Forests

Dr. Adam Daigneault
University of Maine

August 25, 2020

1865 THE UNIVERSITY OF
MAINE

What are "Natural Climate Solutions"?

Any action that conserves, restores or improves the use or management of forests, wetlands, grasslands, and agricultural lands, while simultaneously increasing carbon storage or avoiding greenhouse gas emissions.

MANAGE

TIMBERLANDS BETTER
1,275 million metric tons
3,037 million metric tons

MANAGE

GRAZING LANDS BETTER
485 million metric tons

NATURAL CLIMATE SOLUTIONS

In the U.S., nature has potential to remove 21% of the nation's carbon pollution-equivalent to removing emissions from ALL cars and trucks on the road... and then some.

$$
=10 \mathrm{M} \text { cars }
$$

But, agriculture, forest and other land use greenhouse gas (GHG) emissions vary depending on where and what you measure...

Total Maine GHG Emissions by Source
Category in 2017

ME Forests: -70\%

Maine GHG Emissions and Forest C Removals 1990-2017

Figure 11. Maine's greenhouse gas emissions 1990-2017 with 2020, 2030, and 2050 reduction and emissions goals

How do we estimate NCS mitigation benefits and costs?

1. Define 'baseline' or 'business as usual' pathway
2. Establish list of acceptable mitigation practices
3. Estimate 'cost' and 'effectiveness' of implementing practices

Estimating Costs and Benefits

Costs

Benefits

- Increased C sequestration
- Yield improvements
- Diversified income stream
- Other environmental co-
- Opportunity
- Yield reductions
- Harvestable area
- Capital/equipment
- Labor
- Maintenance
- Other environmental costs?
- Cost-savings benefits?

Some forestry practices to consider...

Methods

- Model: LANDIS-II forest landscape model
- Geography: 9.1 million acres, 30m resolution
- Timespan: 2020 to 2100
- Climate: RCP 2.6 (low climate change) and RCP 8.5 (high climate change)
- Mitigation practices:
- extend rotation
- partial/clearcut harvest distribution
- tree planting
- set-asides
- mix of above

Figurative example of the cell-based system used by LANDIS-II to represent a single species (e.g., Red spruce) even-aged area of forest. Stands are formed by groups of like cells.

Baseline/Business as Usual (BAU) Scenario

- Emulated the average rate of harvesting in the study area from 2000-2010
- Harvest practice: 90\% partial removal, 10\% clearcut
- Timber removal: $\sim 50 \%$ of biomass from combo of harvest trails and group selection.
- Minimum mean stand age eligible for harvest: 50 years.
- Supply target: maintain 2010 total harvest levels

Forest NCS Practices Modeled

1. Extended Rotation: increased minimum stand age eligible for harvest (from 50 year to 70,85 , or 100 years).
2. Clearcut/Partial harvest distribution: increased \% of the harvest (from 10% to 30% or 40%). Wood supply was held constant by reducing overall harvest footprint.
3. Planting: added planting (or artificial regeneration) after clearcut with a 700 tree per acre mix of red and white spruce.
4. Set-aside: Reserved 10% or 20% of land, which is permanently removed from harvest.
5. Triad: Mix of set asides, clearcut+plant, and BAU harvest/rotation
6. Avoided Forest Conversion: Hold 2010 forest area constant via renting land at cost of highest and best use if converted.
7. Afforestation: Plant trees in eligible areas not forested since at least 1990.

Forest Carbon + Cost Estimation

- Forest Carbon Sequestration Components
- Forest C: Annual change in aboveground growing stock
- Harvest C: Removal timber stored in harvested wood products \& landfills ($\sim 20 \%$ removals)

Total C = Forest C + Harvest C

- Economic Costs and Benefits Components
- Harvest value: Harvest x state mean stumpage price (by product)
- Opportunity cost: Change in harvest revenue relative to BAU (can be positive)
- Planting cost: seedling (\$0.37/plant), site prep + spraying (\$250/ac) = \$509/ac
- Land Cost/Rent: varies by current or highest and best use
Total Cost = Opportunity + Planting Cost + Land Cost

[^0]

Biodiversity \& Tradeoffs

\% difference relative to BAU

Scenario	Break even carbon price $\left(\$ / \mathrm{tCO}_{2} \mathrm{e}\right)$	Total harvest 2010-2060	Spruce-Fir C	LS fores Spruce-Fir	Change N. Hardwood	Lynx habitat Change
Min 100 years	\$12	-13\%	33\%	-8\%	-13\%	-25\%
10\% set-aside	\$20	-7\%	10\%	4\%	4\%	-3\%
35\% CC*	\$6	-0.4\%	-4\%	-12\%	4\%	33\%
35\% CC* + plant	\$14	-0.3\%	117\%	9\%	-7\%	487\%
35% CC* + plant $+10 \%$ set-aside	\$12	-8\%	118\%	-4\%	0\%	427\%

[^1]```
Avoided Conversion - Developed
 Avoided Conversion - Crop
 200,155
 Afforestation 759,617
```

Total Cost: \$4 to \$72 million/yr

```
35% CC, plant, 10% set aside
 685,428
```

$35 \%$ CC, plant, $20 \%$ set aside

Avoided Conversion - Developed
Avoided Conversion - Crop Afforestation $35 \%$ CC, plant, $10 \%$ set aside $20 \%$ set-aside
$10 \%$ set-aside
$50 \%$ CC, plant $35 \%$ CC, plant 50\% Clearcut (CC) $35 \%$ Clearcut (CC)

Min 100 years Min 85 years


Total Potential: 0.2 to 4.3

## $\mathrm{MtCO}_{2} \mathrm{e} / \mathrm{yr}$



493,224

```

2,766,020
```

```
1,159,547
```

```
```

1,159,547

```
 3,516,260

\section*{Carbon Price}

Maximum Price

\section*{\$100/tCO2e}

\section*{\$50/tCO2e}
\$10/tCO2e

\section*{Maine Forest NCS Summary}
- Top options by Mitigation Total (\& mean break-even price):
1. \(50 \%\) clearcut area + planting: \(3.5 \mathrm{MtCO}_{2} \mathrm{e} / \mathrm{yr}\)
2. \(20 \%\) set aside \(+35 \%\) clearcut: \(3.2 \mathrm{MtCO}_{2} \mathrm{e} / \mathrm{yr}\)
3. \(10 \%\) set aside \(+35 \%\) clearcut: \(2.8 \mathrm{MtCO}_{2} \mathrm{e} / \mathrm{yr}\)
4. \(35 \%\) clearcut + planting: \(2.5 \mathrm{MtCO}_{2} \mathrm{e} / \mathrm{yr}\)
5. \(20 \%\) set aside: \(1.2 \mathrm{MtCO}_{2} \mathrm{e} / \mathrm{yr}\)
- Most practices allow harvests to continue to follow BAU (exception is scenario with constraint that stands must be at least 100 years old to harvest)
- As harvests close to BAU, minimal risk of 'leakage' in most scenarios (ex. 100 yr rot)
- Habitat tradeoffs with increased clearcut \& planting v. natural regeneration
- Costs are relatively cheap compared to typical carbon prices for other sectors of economy \& social cost of carbon estimates (often \(\$ 40+/\) tCO2e or more)

\section*{Thanks to all our collaborators and funders...}

\author{
Dr. Erin Simons-Legaard
}

Dr. Ivan Fernandez
Dr. Aaron Weiskittel

|USCA
States United for Climate Action

FARMLAND TRUST

Senator George J. Mitchell Center for Sustainability Solutions

\section*{Want to know more about Maine's Natural Climate Solutions?}
as cropland nutrient management, planting trees, and conservation, that sequester carbon or limit GHG emissions can affect near-term GHG mitigation goals in cost-effective ways and enhance long-term ecosystem services.

Visit the UMaine Forest Climate Change Initiative's website for full report, fact sheets, and more!

\section*{https://crsf.umaine.edu/forest-climate-change-initiative/ncs/}

\section*{Contact Details}

\section*{Dr. Adam Daigneault}

\section*{E.L. Giddings Asst Prof of Forest, Conservation, and Recreation Policy}

\section*{2 University of Maine}

5755 Nutting Mall, Rm 219
adam.daigneault@maine.edu```

[^0]: -2,000,000

[^1]: *assumes all clearcuts (CC) target forest with spruce-fir relative abundance $>50 \%$

