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Abstract: When forest conditions are mapped from empirical models, uncertainty in remotely sensed
predictor variables can cause the systematic overestimation of low values, underestimation of high
values, and suppression of variability. This regression dilution or attenuation bias is a well-recognized
problem in remote sensing applications, with few practical solutions. Attenuation is of particular
concern for applications that are responsive to prediction patterns at the high end of observed data
ranges, where systematic error is typically greatest. We addressed attenuation bias in models of
tree species relative abundance (percent of total aboveground live biomass) based on multitemporal
Landsat and topoclimatic predictor data. We developed a multi-objective support vector regression
(MOSVR) algorithm that simultaneously minimizes total prediction error and systematic error caused
by attenuation bias. Applied to 13 tree species in the Acadian Forest Region of the northeastern
U.S., MOSVR performed well compared to other prediction methods including single-objective
SVR (SOSVR) minimizing total error, Random Forest (RF), gradient nearest neighbor (GNN),
and Random Forest nearest neighbor (RFNN) algorithms. SOSVR and RF yielded the lowest total
prediction error but produced the greatest systematic error, consistent with strong attenuation bias.
Underestimation at high relative abundance caused strong deviations between predicted patterns
of species dominance/codominance and those observed at field plots. In contrast, GNN and RFNN
produced dominance/codominance patterns that deviated little from observed patterns, but predicted
species relative abundance with lower accuracy and substantial systematic error. MOSVR produced
the least systematic error for all species with total error often comparable to SOSVR or RF. Predicted
patterns of dominance/codominance matched observations well, though not quite as well as GNN
or RFNN. Overall, MOSVR provides an effective machine learning approach to the reduction of
systematic prediction error and should be fully generalizable to other remote sensing applications
and prediction problems.

Keywords: support vector machines; genetic algorithm; multi-objective optimization; Pareto
optimization; regression; regression dilution bias; attenuation bias; species distribution modeling;
species abundance; species dominance

1. Introduction

As forest ecosystems are pushed toward novel conditions by anthropogenic disturbance and
environmental change, there is an increasing need for information on the spatial distribution and
condition of forest resources as a basis for quantifying ecosystem services, evaluating and forecasting
change, and planning management actions. Field data and specifically forest inventory measurements
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can provide great detail at high accuracy, but are collected from a sample of small plots. Observational
data are needed across scales relevant to forest policy and management, and commensurate with
drivers of change acting over local to global scales (e.g., non-native pests, market conditions, climate
change). Consequently, forest conditions are mapped from empirical relationships between field
measurements and remote sensing data, often using some form of regression algorithm (e.g., [1–6]).
Spatial heterogeneity of forests and uncertainty in remotely sensed predictor variables, however,
can cause patterns of prediction error that may be detrimental to map use [6–8].

At moderate spatial resolutions, a prominent source of uncertainty in predictor variables may
be physical differences in measurements between field plots and image pixels [7]. Whereas the ideal
remotely sensed predictor data would represent the same ground area as reference plot data, scale and
location mismatches introduce uncertainty. Forest inventory measurements are typically obtained
over plots that are a fraction of the size of moderate resolution image pixels. For example, the Forest
Inventory and Analysis (FIA) Program of the U.S. Forest Service provides measurements from a national
network of field plots, each composed of a cluster of four subplots [9]. An FIA plot samples an area
roughly equivalent to a 3 × 3 neighborhood of 30 m Landsat pixels. The actual area measured within
subplots however, collectively equates to only 8% of that pixel neighborhood. Average conditions
across a pixel neighborhood likely will not correspond to those measured at FIA subplots [7,8].
Image georeferencing or registration error coupled with GPS error in plot coordinates further interferes
with the physical correspondence of pixels and plots [7]. Potentially compounding these problems are
differences in timing between image acquisitions and plot measurements and additional sources of
predictor uncertainty associated with remote sensing platforms, instrumentation, viewing conditions,
and data handling.

Without correcting for uncertainty in predictor variables, regression algorithms generally assign
variation in the predictors to variation in the response given the predictors. Minimization of prediction
error when fitting regression models thereafter leads to underestimation of the strength of the
relationship between predictors and response, and a characteristic pattern of prediction error where low
values tend to be overestimated, high values underestimated, and variability suppressed. This pattern
of error is known as regression dilution or attenuation bias [10,11]. In the presence of predictor variable
uncertainty, reduction of total error tends to cause elevated attenuation bias. Attenuation is perhaps
most detrimental to applications that are specifically dependent upon or influenced by patterns of
prediction at high or low values, although more generally, the effects of attenuation bias may be difficult
to identify or correct.

Attenuation bias is a long-recognized problem in remote sensing [12], but there remain few
options available for its reduction or correction. Rejou-Mechain et al. [8] emphasized the importance
of attenuation bias in the estimation of aboveground biomass by regression against field plot
measurements, and demonstrated that established statistical approaches to reducing bias may be
inadequate. Xu et al. [7] asserted that attenuation bias is a pervasive problem in remote sensing
of forest attributes and suggested that no analytical method was capable of eliminating this bias.
After analyzing causes using simple error models, they suggested that field data be collected over an area
similar to the size of pixels or pixel neighborhoods used for prediction. Yet they also demonstrated
that location mismatches can cause severe attenuation regardless. Robinson et al. [13] recognized
strong attenuation bias when estimating aboveground biomass from FIA plot data and airborne
radar, and suggested that FIA plots may not provide suitable reference observations. However,
FIA or similar inventory data provide statistically representative and quality assured measurements
that are commonly used for model training, though often resulting in patterns of error consistent with
attenuation bias (e.g., [1,2,14–17]). A number of approaches have been advanced to reduce attenuation
bias in parametric species distribution models, using error-in-variables [18] or Bayesian methods [19,20].
These approaches, however, are not always tractable for remote sensing applications, which frequently
utilize very large sets of predictor variables.
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Here we present an approach to the reduction of attenuation bias using support vector machines
(SVMs). SVMs were originally developed for binary classification but have been widely applied
to regression problems and remote sensing applications [21,22]. SVMs require the specification of
several free parameters that determine model fit. Optimal values are problem-specific, varying with
the available training data and predictor variables. SVM parameterization is therefore equivalent to
a search for an optimal combination of values within a multidimensional search space. The complexity
of the problem is further increased if the search is expanded to include the selection of a subset of
predictor variables. Variable selection may reduce computational complexity and improve model
fit [23], and because different predictor variables may be subject to different levels of measurement error,
variable selection may also reduce systematic error. Similar benefits may follow from the selection
of a subset of available training data [24]. Ideally, all aspects of model specification are performed
simultaneously, and several classes of optimization or search algorithms are suitable, including genetic
algorithms (GAs; e.g., [25–28]). Using a guided search mechanism founded on the analogy of evolution
by natural selection, GAs are capable of obtaining near-optimal solutions from a large and complex
search space [29]. Because attenuation arises from the minimization of error when fitting regression
models in the presence of predictor variable uncertainty, we approached SVM model training and
model selection as a multi-objective optimization problem, simultaneously minimizing total and
systematic error using a multi-objective GA [30]. Our goal was to obtain solutions with reduced
systematic error at acceptable levels of total error.

Our interest in attenuation bias stemmed from the need to map individual tree species distributions
to improve knowledge of current forest conditions and to forecast future conditions in the Acadian Forest
of northern Maine (USA). Reliable predictions of tree species distributions are needed, and patterns
of species dominance or codominance are particularly important. We applied our multi-objective
support vector regression (MOSVR) method to the prediction of forest tree species relative abundance
(proportion of aboveground live biomass) in the Acadian Forest using multitemporal Landsat imagery
and topoclimatic variables. We evaluated species dominance and codominance in terms of ranked
relative abundance, and compared relative abundance and dominance/codominance predictions
against those of other commonly used modeling approaches including random forests and nearest
neighbor methods. Results indicated that MOSVR provides an effective approach to the reduction of
attenuation bias.

2. Materials and Methods

2.1. Study Area

The Acadian Forest Region of the northeastern U.S. occupies a transition zone between the
northern boreal forest and the southern temperate deciduous-dominant forest [31], and includes
approximately 4 Mha of nearly contiguous, undeveloped forestland across northern and western
Maine. Our 1.9 Mha study region (Figure 1) was defined by the overlap of Landsat Worldwide Reference
System path 12, row 28 and the political boundary between northwestern Maine and Quebec, Canada.
Topography is generally flat or rolling with occasional low mountains and an extensive network of
rivers, lakes, and wetlands. Tree species diversity is relatively high as the northern limit of southern
species overlaps with the southern limit of northern species [32].

Forest type distributions are associated with climatic gradients, topo-edaphic conditions,
and disturbance history [33]. Northern hardwood species (Acer saccharum, Betula alleghaniensis,
Fagus grandifolia) predominate across lower hilltops and at mid-slope. Spruce-fir species (Abies balsamea,
Picea rubens, P. mariana) predominate where soil or microclimatic conditions exclude the more demanding
hardwoods. Mixedwood stands commonly occur along ecotones or as a result of succession following
disturbance. Shade-intolerant hardwood species (Betula papyrifera, Populus spp.) are commonly found
following intense disturbance.
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Figure 1. Northern Maine, U.S.A. study area encompassing 1.9 Mha of forestland. Political boundaries 
were obtained from the North American Atlas (Natural Resources Canada, Instituto Nacional de 
Estadística Geografía e Informática, and U.S. Geological Survey). 

Forest type distributions are associated with climatic gradients, topo-edaphic conditions, and 
disturbance history [33]. Northern hardwood species (Acer saccharum, Betula alleghaniensis, Fagus 
grandifolia) predominate across lower hilltops and at mid-slope. Spruce-fir species (Abies balsamea, 
Picea rubens, P. mariana) predominate where soil or microclimatic conditions exclude the more 
demanding hardwoods. Mixedwood stands commonly occur along ecotones or as a result of 
succession following disturbance. Shade-intolerant hardwood species (Betula papyrifera, Populus 
spp.) are commonly found following intense disturbance. 
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Figure 1. Northern Maine, USA study area encompassing 1.9 Mha of forestland. Political boundaries
were obtained from the North American Atlas (Natural Resources Canada, Instituto Nacional de
Estadística Geografía e Informática, and U.S. Geological Survey).

2.2. Reference and Predictor Data

Predictive models of species relative abundance are based on reference data provided by the
USFS FIA Program. The contemporary network of field plots adheres to an equal probability sampling
design, with plots randomly located within 2428 ha hexagonal tiles [9]. The FIA program maintains
the confidentiality of true plot locations to protect the privacy of landowners and to preserve plot
integrity [34]. True locations were made available for use through a collaborative agreement with the
USFS Northern Research Station FIA Program. Tree measurement data were used to calculate species
relative abundance as a proportion of estimated live aboveground biomass (stems >2.54 cm diameter,
measured at 1.37 m; DRYBIO_AG variable [35]). Since 1999, 20% of plots within Maine have been
surveyed annually during 5-year inventory cycles [9].

Our intention was to map forest conditions of the early or mid-2000s to support analysis of recent
change as well as forecasting of future conditions. We collected Landsat Thematic Mapper (TM) and
Enhanced Thematic Mapper Plus (ETM+) imagery acquired at different times throughout the growing
season (late April through early October) to exploit species-specific phenological patterns as a basis for
improving species predictions. Frequent and extensive cloud cover dictated the use of both TM and
ETM+ images, and we elected to use ETM+ images acquired during the early 2000s prior to the failure
of the ETM+ scan line corrector. We selected eight relatively cloud- and snow-free images acquired
from 2001-2006, roughly matching a 5-year FIA inventory cycle (Table 1). Images were obtained
from the U.S. Geological Survey (USGS) Earth Resources Observation and Science Center and the
Multi-Resolution Land Characteristics Consortium at 30 m resolution with standard terrain correction
applied. Bands 1-5 and 7 (visible and reflective infrared) were extracted for further processing and
converted to top-of-atmosphere reflectance to facilitate cloud masking and interpretation of pixel values
during image preparation (conversion was not required for predictive modeling). Clouds and cloud
shadows were masked using a semi-automated procedure developed in-house, verified and corrected
by visual interpretation and on-screen digitization. Visible snow cover in early-season imagery was
masked by unsupervised classification using an ISODATA algorithm and visual interpretation of
snow-covered classes. Images were then corrected for topographic illumination effects using the
SCS+C algorithm [36], with slope and aspect calculated from the 1 arc-second (30 m) National Map
Seamless Digital Elevation Model maintained by the USGS [37].
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Table 1. Landsat images used for predictive modeling of tree species relative abundance. Images were
acquired over Landsat Worldwide Reference System-2 path 12, row 28, and were obtained from the U.S.
Geological Survey Earth Resources Observation and Science Center unless indicated otherwise.

Acquisition Date Landsat Sensor % Forest Under Cloud, Shadow, Snow

Species:
29 April 2006 TM 1.0
12 May 2005 TM 2.5
25 May 2001 ETM+ 1.2
10 June 2004 TM 0.4
20 July 2001 1 TM 0.9

14 September 2004 TM 0.3
30 September 2001 ETM+ -

6 October 2006 TM 3.0
Canopy change: 2

20 July 2001 1 TM 0.9
10 June 2004 TM 0.4

19 June 2007 3 TM 9.0
1 Available from the Multi-Resolution Land Characteristics consortium. 2 Images used to mask change resulting
from disturbance and regrowth over the 2001–2006 observation period. 3 Cloud-contaminated data were replaced
with data from a TM image acquired on Aug. 22, 2007, following relative radiometric normalization [38].

Forest canopy change during the 5-year observation period dissociated image characteristics
from field measurements at affected plot locations. We therefore masked locations of apparent
canopy cover change using available leaf-on images acquired in 2001, 2004, and 2007 (Table 1).
The iteratively-reweighted multivariate alteration detection transformation [38] was applied to
2001–2004 and 2004-2007 image pairs to estimate a probability of spectral change during each
interval. Intervals were combined by selecting the maximum probability of change, and a threshold
was selected so that 20% of forest pixels were identified as change pixels. Threshold selection was based
on visual inspection of the resulting 2001-2007 change mask against Landsat imagery, which indicated
close correspondence with canopy disturbance and visible regrowth in previously disturbed stands.

Additional spatial predictor variables included climate and terrain attributes thought to be
relevant to tree establishment or growth. Terrain data included 10 morphometry, 8 lighting/visibility,
and 11 hydrology variables (Table 2) calculated from the 1 arc-second (30 m) National Map Seamless
Digital Elevation Model and the National Hydrography Dataset (NHD) using the System for Automated
Geoscientific Analyses [39]. Elevation data was smoothed with a Gaussian filter to reduce the effects of
random error and systematic artifacts (circular filter element, radius = 90 m, σ = 1.5). Terrain slope,
aspect, and curvature were calculated from a second-order polynomial fit [40]. Direct insolation was
calculated at mid-month, April-September, by assuming a uniform 65% atmospheric transmittance,
a value that produced insolation estimates in good agreement with a previously published regional
climate model [41]. Hydrology variables including catchment area, flow path length, and distance to
stream channel were calculated using a bidimensional flow routing algorithm [42] after filling sinks
in the elevation data [43]. Synthetic stream channel networks were derived from the catchment area
raster after masking and dilating NHD water bodies using a 5 × 5 filter element. The dilated water
body mask reduced the tendency for channels to initiate near the edges of water bodies, where the flow
routing algorithm produced large estimates of flow accumulation. Climate data were obtained from
the USDA Forest Service Rocky Mountain Research Station, Moscow Forestry Sciences Laboratory,
and included 17 variables (Table 2) derived from monthly temperature and precipitation surfaces
interpolated from weather station data for the climate normal period of 1961–1990 [44,45]. Climate data
were available at approximately 1 km spatial resolution.
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Table 2. Terrain and climate variables used to model and map tree species relative abundance. Terrain
variables were calculated using the System for Automated Geoscientific Analyses software [39] v. 2.1.4
with default settings unless otherwise specified. Climate variables were obtained from the USDA
Forest Service Rocky Mountain Research Station, Moscow Forestry Sciences Laboratory [44].

Terrain Morphometry (10 Variables)

Elevation

Slope Local terrain slope, from fit of
second-order polynomial

Aspect Local terrain aspect, from fit of
second-order polynomial cos(aspect-450) + 1 [46]

Curvature Local terrain curvature, from fit of
second-order polynomial Tangential, profile, and plan curvature

Topographic position index Difference between elevation and mean
elevation of circular neighborhood [47]

150 m, 300 m, 1000 m, 2000 m
neighborhood radii

Lighting/visibility (eight variables)

Visible sky Proportion of hemisphere unobstructed
by terrain [48] 10,000 m search radius

Sky view factor Ratio of diffuse irradiance to that of an
unobstructed horizontal surface [48] 10,000 m search radius

Direct insolation Potential incoming solar radiation
single day estimate at mid-month,

April-September;
65% atmospheric transmittance

Hydrology (11 variables)

Catchment area Upslope area or flow accumulation log10 transformed

Catchment height Difference between elevation and mean
elevation of upslope pixels

Catchment slope Mean slope of upslope pixels

Catchment aspect Mean aspect of upslope pixels cos(aspect-45◦) + 1 [46]

Flow path length Mean distance of flow
from upslope pixels

Distance to stream channel

Shortest distance (or distance
component) to synthetic stream channel

network calculated by flow
routing algorithm

overland distance and horizontal,
vertical distance components;

stream networks from 10 ha and 50 ha
flow initiation thresholds

Climate (17 variables)

D100 Julian date on which the sum of degree-days >5 ◦C reaches 100
DD0 Degree-days <0 ◦C
DD5 Degree-days >5 ◦C

FDAY Julian date of the first autumn freeze
FFP Length of the frost-free period (days)

GSDD5 Degree-days >5 ◦C accumulated over the frost-free period
GSP Growing season precipitation (April-September)
MAP Mean annual precipitation
MAT Mean annual temperature

MMAX Mean maximum temperature of warmest month
MINDD0 Minimum degree-days <0 ◦C

MMIN Minimum temperature of coldest month
MTCM Mean temperature of coldest month
MTWM Mean temperature of warmest month
SDAY Julian date of last spring freeze

SMRPB Summer precipitation balance (July + August + September/April + May + June)
SMRSPRPB Summer/spring precipitation balance (July + August/April + May)

Predictor variable values were extracted at forested FIA plots. Landsat and terrain data were
compiled by averaging values from forest pixels within 3 × 3 neighborhoods surrounding plot
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centers; climate predictor data were extracted as 1 km pixel values. Forest pixels were differentiated
from non-forest using the 1993 Maine Gap Analysis Program (GAP) land cover map, augmented
with the agricultural classes of the 2001 National Land Cover Database (NLCD). The 1993 GAP
map differentiated forest from non-forest with an estimated 100% accuracy in our study area [49].
Incorporation of the 2001 NLCD agricultural classes accounted for a small amount of land cover change
predating our 2001-2006 observation period. SVMs are generally incapable of working with incomplete
predictor data and for the purposes of algorithm development and evaluation, we elected to exclude
samples with missing data due to forest cover change, cloud/shadow cover, or snow cover rather than
incorporate an additional algorithm for imputing missing data. Remaining plot locations yielded
a training/validation data set consisting of 349 samples.

2.3. Multi-Objective SVR (MOSVR) Algorithm Description

Our implementation of a multi-objective SVR (MOSVR) algorithm is based on ε-SVR with
a Gaussian radial basis function (RBF) kernel, and includes parameter selection (γ, ε, and C),
variable selection, and a form of training sample selection. The kernel function accommodates
nonlinear relationships through the projection of training data into a space of high dimensionality.
The RBF kernel typically performs well due to several computational and practical advantages over
other functions, including the need to specify only a single free parameter, the kernel width γ [22,50].
Narrower RBF kernels essentially permit the projection of training data into higher dimensions,
corresponding to more complex solutions when expressed in the original variable space. The ε-SVR
formulation is based on the so-called ε-insensitive loss function, where a margin of width ε bounds
the regression function, with nonzero loss applied only to training samples lying outside the margin
(the support vectors, or SVs). Narrower margins generally correspond to larger numbers of SVs
and more complex solutions. The regularization or penalty error parameter C specifies a trade-off

between model complexity and training error. The parameters ε, C, and γ collectively determine the
complexity of the regression function and its ability to generalize to new data [50]. Optimal values are
problem-specific, varying with the available training data and predictor variables. MOSVR executes
a simultaneous search for parameter values, predictor variable subsets, and training sample subsets.
Our approach to training sample selection is to specify a subset of reference samples as eligible for
exclusion from model training. However, all reference samples are used for model validation.

Use of a GA requires the expression of individual models in the form of a genotype subject
to selection, genetic recombination, and mutation. Each SVR model is represented by a bit string
chromosome, composed of segments encoding parameter values, variable selection, and sample
exclusion (Figure 2). The lengths of segments representing parameter values determine the levels of
precision with which real values are represented by binary encoding. Variable selection is encoded as
a bit string segment with length equal to the number of available predictor variables, interpreted as
a binary mask. Sample exclusion is similarly encoded as a segment with length equal to the number of
samples made eligible for exclusion, indicating specific samples to be excluded from model training.
Note however, that all samples are used for model validation within a cross-validation (CV) procedure.
The GA is initiated with a uniform random population of a user-specified size.
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Numerous multi-objective GAs have been published and reviewed [30]. Our approach is based
on the popular NSGA-II algorithm [51] implemented in the MATLAB Global Optimization Toolbox,



Remote Sens. 2020, 12, 1739 8 of 25

Release 2014a (The MathWorks, Inc., Natick, MA, USA). The LIBSVM open source software [52] is
used for SVM training and prediction. The MATLAB implementation of NSGA-II acts as a wrapper for
LIBSVM. A diagrammatic representation of algorithm details is provided in Figure 3.
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Figure 3. Multi-objective support vector regression algorithm implementation. Following selection
of training and validation data, SVR models are fit and predictions made using LIBSVM. Objective
function values are estimated by repeated cross-validation using all samples, and serve as the basis for
population sorting, parent selection, and genetic operations embedded within the NSGA-II.

For each generation of solutions, NSGA-II differentiates groups of parents (P) and offspring
(Q) of equal size. Initially all individuals are random and specification of P0 and Q0 is arbitrary.
The chromosome representing each member of the current population (Pt ∪ Qt) is decoded into
real-valued SVM parameters and variable selection and sample exclusion masks. Individual models
are trained and validated by a k-fold CV. Continuous variables are scaled to unit range ([0, 1]) at each
CV iteration. The CV procedure is repeated a user-specified number of times and results averaged to
reduce the uncertainty of objective function estimates [53].

CV estimates of objective function values are assigned to each member of the current population.
Objective functions quantify total error (RMSET) and systematic error (RMSESYS):

g1 = RMSET =

1
n

n∑
i=1

(
f̂ (xi) − yi

)2


1
2

, (1)
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g2 = RMSESYS =

1
n

n∑
i=1

(a + byi − yi)
2


1
2

(2)

where a and b are the intercept and slope of the ordinary least squares (OLS) regression between predicted
values f̂ (xi) and observed values yi [54]. The objective functions map solutions into a two-dimensional
objective space Φ = {g1(p) g2(p) | p ε Ω}, where Ω is the set of all possible solutions. Solution pi is said
to dominate solution pj provided g1(pi) ≤ g1(pj) and g2(pi) ≤ g2(pj) with at least one strict inequality.
In other words, one solution dominates another if it is better in one objective and at least as good in the
other. A solution is nondominated if neither objective can be improved further without a worsening of
the other. The set of nondominated solutions in Ω is referred to as the Pareto set, and the image of the
Pareto set in the objective space Φ is the Pareto front. The goal of NSGA-II is to closely approximate
the true Pareto set by driving evolution toward the Pareto front.

At each generation, NSGA-II sorts the current population of solutions (Pt ∪ Qt) into a sequence
of nondominated fronts (F1, F2, . . . ). The first front F1 includes all nondominated solutions from
the total population and is the current best approximation of the Pareto front. Once F1 is obtained,
these solutions are removed from the population, and the next front F2 is obtained as nondominated
solutions from the reduced population. The process is iterated until all population members have
been assigned to a front. NSGA-II subsequently identifies one half of the population as the next
generation of parents (Pt+1), selecting solutions from successive fronts. In the MATLAB implementation,
the maximum number of parent solutions selected from F1 and successive fronts is constrained in
order to promote population diversity throughout algorithm execution. Within any individual front,
parent solutions are selected from sparse or less crowded portions of the front to further promote
population diversity.

The next generation of offspring (Qt+1, equal in size to Pt+1) are obtained through genetic
recombination and mutation of parent solutions. A user-specified proportion of offspring are produced
through genetic recombination of a pair of parent solutions, and the remainder through mutation of
a single parent. Individual parents are identified by tournament selection [55], where a user-specified
number of solutions are randomly selected from Pt+1 and the best is selected as a parent. Better solutions
lie on lower ranked fronts and in less crowded regions along their front. Genetic recombination occurs
through a crossover operation in which an offspring is constructed from bit string segments copied from
its parents. Different crossover operations determine the manner in which information is exchanged
and the potential degree of novelty introduced through exchange [55]. An offspring produced by
mutation is a copy of its parent subjected to a mutation operation that switches individual bit
values with a user-specified probability. Once offspring have been produced, parent and offspring
chromosomes (Pt+1 ∪ Qt+1) are decoded and the process repeats over a user-specified number of
generations. At the final generation, members of F1 are retrained using all available training samples
and returned as a set of Pareto optimal models expressing tradeoffs between RMSET and RMSESYS.

2.4. MOSVR Algorithm Execution

From the FIA data compiled for our study area, we modeled and mapped the relative abundance
of 13 tree species (Table 3). SVR parameter values were constrained within reasonable ranges
(log(γ) ε [[–4,0]; log(C) ε [[–1,3]; log(ε) ε [[–4,0]). A set of 78 reference samples was made eligible for
exclusion from model training, including plots with non-forest cover types identified by FIA records
and plots with high spectral variability (based on neighborhood standard deviations, averaged across
all images and bands). We retained samples for which FIA records indicated multiple forest types.
All reference samples were used for model validation in a 10-fold, 10 times repeated CV.
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Table 3. Reference data characteristics of the 13 modeled tree species (349 samples).

Species Common Name Species Code 1 Prev. 2 Mean Relative
Abundance 3

SD of Relative
Abundance 3

Maximum Relative
Abundance 3

Dominance
Frequency 4

Abies balsamea Balsam fir ABBA 0.84 0.15 0.18 0.92 0.49
Acer rubrum Red maple ACRU 0.69 0.11 0.15 0.91 0.38

Acer saccharum Sugar maple ACSA3 0.38 0.12 0.22 0.99 0.25
Betula alleghaniensis Yellow birch BEAL2 0.62 0.11 0.15 0.82 0.38

Betula papyrifera Paper birch BEPA 0.65 0.11 0.15 0.74 0.36
Fagus grandifolia American beech FAGR 0.26 0.036 0.097 0.64 0.12

Fraxinus americana White ash FRAXI 0.14 0.013 0.046 0.43 0.046
Picea glauca White spruce PIGL 0.24 0.017 0.055 0.59 0.059

Picea mariana Black spruce PIMA 0.099 0.037 0.16 0.99 0.053
Picea rubens Red spruce PIRU 0.81 0.16 0.19 0.90 0.46
Pinus strobus White pine PIST 0.19 0.034 0.099 0.67 0.11

Thuja occidentalis Northern white cedar THOC2 0.41 0.072 0.14 0.81 0.22
Tsuga canadensis Eastern hemlock TSCA 0.084 0.012 0.055 0.45 0.035

1 Species codes used by the USFS FIA Program. 2 Species prevalence, or proportion of FIA plots at which the species was present. 3 Proportion of estimated live aboveground biomass
(of stems >2.54 cm diameter, measured at 1.37 m). 4 Frequency with which a species occurred as a one of the three most abundant species on an FIA plot.
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We set GA parameters in an effort to balance the promotion of population diversity against
execution time. The population size was set to 500, with a maximum of 20% of solutions maintained
on the approximate Pareto front. Parents were selected by tournament with 10 participants. 70% of
offspring were generated by crossover of parent chromosomes, using the MATLAB scattered crossover
operation in which bits were selected from each parent at random. 30% of offspring were generated by
mutation of parents, with a mutation rate of 2.5%. Approximate Pareto fronts typically stabilized by
80-100 generations, and algorithm execution was limited to 120 generations.

The estimation of RMSESYS by linear least squares regression of CV predictions onto observed
values was in some cases sensitive to outlying samples whose CV predictions deviated strongly from
those of other samples with similar observed values. In these cases, removal of influential outliers
was required to ensure that a small number of samples did not drive the GA toward less desirable
solutions, where reduced RMSESYS reflected the presence of influential outliers rather than trends
across the larger set of reference data. We implemented an automated outlier removal strategy at 30,
60, and 90 generations based on the identification of influential outliers for each member of the F1

front. Outlying samples were identified by applying a threshold to absolute studentized residuals.
Influential outliers were identified as those whose removal resulted in a change in RMSESYS exceeding
a threshold level, when expressed as a proportion of RMSET. Samples identified as influential outliers
in the majority of F1 solutions were removed from both training and validation data. For most species,
we applied a residual threshold of 3 and a RMSESYS threshold of 1%. For FRAXI, PIMA, and TSCA
we used more conservative threshold values of 4 and 2% to reduce the number of outliers removed.
The number of outliers removed for each species ranged from zero to seven, and averaged four
(Supplementary Table S2).

At the end of MOSVR execution, an individual solution was selected from the midsection of the
Pareto front where solutions represented a compromise between RMSESYS and RMSET. We selected
the model positioned nearest to the origin after unit-scaling RMSESYS and RMSET values to normalize
for differences in magnitude between the two.

2.5. Model Comparisons

We compared MOSVR results to those obtained from random forest (RF) [56], gradient nearest
neighbor (GNN) [16], and random forest nearest neighbor (RFNN) [57] algorithms. RF is an ensemble
algorithm based on regression trees and has been widely applied in species distribution modeling and
remote sensing applications. GNN was originally developed and has been commonly applied as a k = 1
nearest neighbor algorithm for modeling regional tree species distributions, with proximity calculated
within a feature space defined by a canonical correspondence analysis (CCA) of plot measurements
and image or environmental predictor data. With k = 1, all observations from individual reference
plots are imputed to pixels, retaining plot-level species associations in predictions. RFNN is another
k = 1 nearest neighbor variant, with proximity obtained from the nodes of one or more RF models.
RFNN shares the advantages of GNN, but is based on a novel, non-Euclidean proximity metric that
may lead to improved outcomes [58].

We adopted typical parameter settings and execution strategies using R v 3.0.3 [59]. RF models
were fit with the R package randomForest, v 4.6-12 [60], with an ensemble size of 2000 and default
parameter settings (mtry = one third of the number of predictor variables; nodesize = 5). For GNN,
CCA models were first fit with the R package vegan, v 2.4-3 [61] using the relative abundance of all
species as the multivariate response. Following Ohmann and Gregory [16], we performed a forward
stepwise variable selection procedure based on AIC, permutation testing, and a check of variance
inflation factors. Variables were considered for addition in the order of their contribution to constrained
inertia (equivalent to AIC when all variables are continuous). Variables were added provided they were
deemed significant by a permutation test (p = 0.01, 99 permutations) and all variance inflation factors
remained below 20. Nearest neighbor imputation was based on Euclidean distance calculated from the
first seven CCA axes (accounting for >95% of total variation explained), scaled by their constrained
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eigenvalues. GNN imputation, and execution of the RFNN algorithm, was performed using the
R package yaImpute, v 1.0-26 [57]. The RFNN imputation was based on a combined nodes matrix
obtained by three separate RF models, fit to total live aboveground biomass, the species with maximum
relative abundance based on aboveground live biomass, and the relative abundance of that species.

We also implemented a single-objective approach to SVR model training (SOSVR) using
a traditional GA (MATLAB Global Optimization Toolbox, Release 2014a) minimizing RMSET,
because SVR model selection is typically based on minimization of overall prediction error. Finally,
to evaluate the relative benefits of variable and sample selection strategies employed by MOSVR,
we compared results to two alternative MOSVR execution strategies that included parameter selection
only, and parameter plus variable selection but no sample selection. All MOSVR execution strategies
used the same GA settings and the same outlier removal strategy. SOSVR runs were executed using
the same values for applicable GA settings, and included parameter, variable, and sample selection.

Following model selection/parameterization, models of all types were run through a 10-fold
CV 100 times with different random partitions to obtain mean model performance metrics from CV
predictions. To ensure fair comparisons amongst model types, we removed CV predictions associated
with influential outliers in MOSVR, on a species by species basis, ensuring equal validation samples.
We compared mean model performance metrics (RMSET, RMSESYS, OLS linear slope, and R2) and 95%
confidence intervals under the assumption that metrics obtained by repeated CV were approximately
normal. We considered a species dominant if it occurred as one of the three most abundant species,
and we calculated the frequencies with which any species or pair of species occurred as dominant or
codominant. Mean dominance/codominance frequencies and corresponding 95% confidence intervals
were obtained from CV predictions for each model type and compared to observed values.

3. Results

The approximate Pareto fronts obtained by MOSVR generally shared a common geometry.
Solutions were distributed more or less evenly across a curvilinear front, with incremental change in
one objective balanced by incremental change in the other (Figure 4a). At one end, models had low
total error but comparatively high systematic error (e.g., Model 1), apparent as a deviation from the
1:1 relationship between predicted and observed values (Figure 4b). At the other end, models had
low systematic error but comparatively high total error (e.g., Model 3, Figure 4d). Fronts were convex
toward the origin (Figure 4a) such that nearer to either end the value of one objective function changed
much more quickly than the other. Rather than select models with minimal systematic error from one
end of the front, where small decreases in RMSESYS were associated with large increases in RMSET,
we selected models from the midsection where prediction error represented more of a compromise
between systematic and total error (e.g., Model 2, Figure 4c).

Of the three MOSVR execution strategies evaluated, the least systematic error was typically
attained through the simultaneous selection of parameter values, variables, and samples
(Supplementary Table S1). In a number of cases, parameter and variable selection achieved similar
levels of systematic error, and in one case significantly lower systematic error. However, in all of these
cases total error exceeded that achieved when sample selection was used as well. Parameter selection
alone failed to reduce systematic error to similar levels. All MOSVR results presented hereafter were
obtained with parameter, variable, and sample selection.



Remote Sens. 2020, 12, 1739 13 of 25

Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 25 

 

selection alone failed to reduce systematic error to similar levels. All MOSVR results presented 
hereafter were obtained with parameter, variable, and sample selection. 

 

Figure 4. Pareto front and select Pareto-optimal models for species ABBA (balsam fir). (a) The 
approximate Pareto front obtained by MOSVR (including parameter, variable, and sample selection). 
(b-d) Plots of predicted vs. observed values for selected models lying at different positions along the 
Pareto front. For comparison to other prediction methods and for use in forest mapping, a model was 
selected from the midsection of the front (Model 2). Predicted values are mean values obtained from 
100 repetitions of a 10-fold CV. 

Several patterns appeared when comparing model performance metrics across model types and 
species (Figure 5). SOSVR attained the least total error for all but a single species (Figure 5a). The least 
systematic error, when expressed as a percentage of total error, was always attained by MOSVR 
(Figure 5b). The slope between predicted and observed values was also greatest (closest to one) for 
MOSVR models (Figure 5c). R2 values were generally greatest for MOSVR models as a result of 
reduced levels of systematic error, although the low total error attained by SOSVR resulted in R2 
values as high or higher for some species (Figure 5d). In nearly all cases, nearest neighbor methods 
(GNN and RFNN) resulted in the greatest total error and RF models the greatest systematic error. 
Compared to MOSVR outcomes in which systematic error ranged from 10–42% of total error across 
species (mean = 27%), systematic error in RF models accounted for 62–93% of total error (mean = 
83%). Systematic error in nearest neighbor methods ranged from 30–71% of total error (GNN mean = 
58%; RFNN mean = 57%). 

Figure 4. Pareto front and select Pareto-optimal models for species ABBA (balsam fir). (a) The approximate
Pareto front obtained by MOSVR (including parameter, variable, and sample selection). (b–d) Plots of
predicted vs. observed values for selected models lying at different positions along the Pareto front.
For comparison to other prediction methods and for use in forest mapping, a model was selected from
the midsection of the front (Model 2). Predicted values are mean values obtained from 100 repetitions
of a 10-fold CV.

Several patterns appeared when comparing model performance metrics across model types
and species (Figure 5). SOSVR attained the least total error for all but a single species (Figure 5a).
The least systematic error, when expressed as a percentage of total error, was always attained by
MOSVR (Figure 5b). The slope between predicted and observed values was also greatest (closest to
one) for MOSVR models (Figure 5c). R2 values were generally greatest for MOSVR models as a result
of reduced levels of systematic error, although the low total error attained by SOSVR resulted in R2

values as high or higher for some species (Figure 5d). In nearly all cases, nearest neighbor methods
(GNN and RFNN) resulted in the greatest total error and RF models the greatest systematic error.
Compared to MOSVR outcomes in which systematic error ranged from 10–42% of total error across
species (mean = 27%), systematic error in RF models accounted for 62–93% of total error (mean = 83%).
Systematic error in nearest neighbor methods ranged from 30–71% of total error (GNN mean = 58%;
RFNN mean = 57%).



Remote Sens. 2020, 12, 1739 14 of 25
Remote Sens. 2020, 12, x FOR PEER REVIEW 14 of 25 

 

 

Figure 5. Predictive performance by species and model type. Performance metrics were obtained from 
linear regression of CV predictions against observed values, averaged across 100 repetitions of a 10-
fold CV. Asterisks indicate model types that produced either the best mean metric value for a given 
species or a value whose 95% confidence interval overlapped that of the best. 

Patterns of systematic error summarized by model performance metrics and consistent with 
attenuation bias were apparent in residuals. Species ABBA provides a representative example (Figure 
6). All model types typically produced slight overestimation of relative abundance for observed 
values <0.2, although in this case overestimation by MOSVR was negligible for relative abundance 
>0.05. All model types produced a systematic underestimation of relative abundance for observed 
values >0.2. The magnitude of underestimation increased as observed relative abundance increased. 
The level of apparent error at high abundance varied between models, with GNN producing the most 
and MOSVR the least (Figure 6f). The degree to which MOSVR mitigated attenuation bias varied 

Figure 5. Predictive performance by species and model type. Performance metrics were obtained
from linear regression of CV predictions against observed values, averaged across 100 repetitions of a
10-fold CV. Asterisks indicate model types that produced either the best mean metric value for a given
species or a value whose 95% confidence interval overlapped that of the best.

Patterns of systematic error summarized by model performance metrics and consistent with
attenuation bias were apparent in residuals. Species ABBA provides a representative example
(Figure 6). All model types typically produced slight overestimation of relative abundance for
observed values <0.2, although in this case overestimation by MOSVR was negligible for relative
abundance >0.05. All model types produced a systematic underestimation of relative abundance for
observed values >0.2. The magnitude of underestimation increased as observed relative abundance
increased. The level of apparent error at high abundance varied between models, with GNN producing
the most and MOSVR the least (Figure 6f). The degree to which MOSVR mitigated attenuation
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bias varied from species to species (Figure 7). However, MOSVR always reduced the magnitude of
systematic underestimation at the high levels of relative abundance that would presumably most
influence predicted patterns of dominance/codominance.
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Figure 6. Trends in residual values for selected model types fit to species ABBA (balsam fir). Residuals
plotted against observed values for (a) MOSVR, (b) SOSVR, (c) RF, (d) GNN, and (e) RFNN model
types. Residual values are mean values obtained from 100 repetitions of a 10-fold CV, displayed with
lowess curves (local weighted least squares regression of a first degree polynomial, spanning 20% of
samples). (f) Lowess curves fit to residual plots for direct comparisons between model types.
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Figure 7. Trends in residual values for selected model types fit to individual tree species. Lowess
curves fit to residual plots (demonstrated in Figure 6) for each of five model types and 12 individual
species. Lowess curves for species ABBA are provided in Figure 6f.

Patterns of observed dominance and codominance largely reflected species associations expected
in the most prevalent forest types of the region (Figure 8a, Table 3). Elevated dominance/codominance
of ABBA and PIRU were consistent with a high prevalence of upland spruce-fir. Similarly,
dominance/codominance of ACSA3 and BEAL2, and to a lesser extent FAGR which occurs at lower
abundance across our study area (Table 3), reflected a high prevalence of northern hardwood.
BEPA commonly occurs at relatively high abundance following intense disturbance, which is common
throughout much of our study area. ACRU grows in high abundance under a wide range of conditions,
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often in disturbed areas. A number of species are either not prevalent or not generally found at high
relative abundance within our study area (FRAXI, PIGL, PIMA, TSCA) (Table 3).
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Figure 8. Observed and predicted patterns of species dominance/codominance. (a) Observed dominance/

codominance frequency, or the proportion of FIA plots at which a species or pair of species occurred or
co-occurred as one of the three most abundant species. (b–f) Differences between predicted and observed
dominance/codominance frequencies for (b) MOSVR, (c) SOSVR, (d) RF, (e) GNN, and (f) RFNN model
types. Predicted values were calculated as mean values obtained from 100 repetitions of a 10-fold CV.
The maximum width of corresponding 95% confidence intervals ranged from 0.4% for RF models to
0.7% for GNN.
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Of the model types evaluated, nearest neighbor methods and RFNN in particular produced
patterns of dominance and codominance that most closely conformed to those observed (Figure 8e,f).
The maximum absolute difference between observed dominance/codominance frequencies and those
predicted by GNN and RFNN was about 4% and 2%, respectively. Absolute differences averaged less
than 1% for both. In contrast, both SOSVR and RF models resulted in predicted patterns that deviated
from observations much more strongly (Figure 8c,d), with absolute differences averaging about 2%
for each but exceeding 10% in a number of instances. The largest differences were over-estimates
of codominance, and for RF several of these amounted to a near doubling of observed frequencies
(e.g., ACRU and BEAL2, Figure 8d). MOSVR produced patterns much closer to those observed and to
those predicted by the nearest neighbor methods, with a maximum absolute difference of about 6%
and an average absolute difference of about 1%.

4. Discussion

Our goal was to develop a method of predicting individual tree species relative abundance
from moderate resolution data at high accuracy and with low systematic error relative to other
established approaches. Comparisons across 13 tree species indicated that our MOSVR algorithm
accomplished that goal (Figures 5–7). As expected, algorithms that yielded the lowest total prediction
error (RF and SOSVR) also produced the greatest systematic error, consistent with a strong attenuation
bias arising from predictor variable uncertainty. Although these methods effectively minimized mean
prediction error, they did so at the cost of systematic over- and underestimation at low and high ends
of observed data distributions. Underestimation at high relative abundance in particular appears to
have affected predicted patterns of species dominance and codominance, causing strong deviations
from those observed at FIA plots (Figure 8c,d).

In contrast, two k = 1 nearest neighbor methods (GNN and RFNN) reproduced observed
dominance/codominance patterns with comparatively little error (Figure 8e,f). By simultaneously
imputing reference measurements for all species, these methods retained plot-level relationships
between species and reproduced dominance/codominance patterns most closely. However,
total prediction error was comparatively high for individual species (Figure 5). Others have emphasized
the strength of nearest neighbor methods in producing reliable community-level outcomes [16,62].
In this case, despite their reproduction of observed dominance/codominance frequencies, nearest
neighbor methods yielded predictions of relative abundance with comparatively low accuracy, subject
to strong attenuation bias.

MOSVR produced the least systematic error for all species, at levels of total error that were always
less than nearest neighbor methods and often comparable to either SOSVR or RF (Figure 5). Predicted
dominance/codominance frequencies agreed with observations much more closely than SOSVR and
RF, though not quite as well as GNN or RFNN (Figure 8). Ultimately, by reducing systematic error
in individual species models, MOSVR balanced the benefits of GNN and RFNN against those of
SOSVR and RF.

MOSVR was able to achieve our primary objective of reducing systematic error by treating
the minimization of both total and systematic error as model selection or tuning objectives within
a multi-objective framework. Multi-objective model selection requires a statistical or machine learning
model capable of generating diverse solutions through the controlled manipulation of model structure.
SVMs are well-suited in the sense that manipulation of a few free parameters can dramatically alter
the geometry of decision boundaries [50]. Pasolli et al. [28] previously implemented a multi-objective
method for SVR parameter selection. For our species relative abundance problems, parameter selection
alone failed to achieve desired reductions in systematic error (Supplementary Table S1). Meaningful
reductions required additional complexity in model specification, achieved through the integration of
variable and sample selection. Integration of variable selection into GA chromosome design enabled
population diversification across a much larger search space, ultimately leading to the evolution of
models with substantially reduced bias. Our sample selection mechanism led to further improvements
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in model performance in some cases, presumably for similar reasons. SVR models are directly
determined by individual samples (SVs) lying on or outside margin boundaries. The removal or
addition of an SV necessarily changes model fit, whereas removal of a sample lying within the SVR
margin does not. We made certain samples eligible for exclusion based on an assumption that they
were more likely to be SVs under a variety of model specifications due to observed variability in land
cover or image characteristics. Enabling their exclusion further reduced bias or total error in some but
not all cases (Supplementary Table S1).

Although MOSVR effectively reduced systematic error, there is room to question when
this is necessary. Riemann et al. [17] presented a multi-scale comparison of biomass predictions
made by a GNN variant against FIA plot measurements as a means of assessing model bias.
A comparison of plot measurements and pixel-level predictions (250 m pixels) revealed strong
systematic disagreement consistent with attenuation bias, but comparisons of averages across large
spatial scales (78,100 and 216,500 ha) revealed low levels of systematic disagreement. Riemann et al. [17]
interpreted this as evidence of an unbiased model, and specifically that systematic differences between
plots and pixels were more attributable to validation data uncertainty than actual model error. However,
attenuation bias does not degrade mean predictive accuracy and averages over large areas should
be little affected. It seems plausible that large-area averages could agree well, despite substantial
attenuation bias in the modeled plot-pixel relationships and substantial systematic error at the
plot-pixel level. Riemann et al. [17] stated that strong systematic agreement of large-area averages
provides evidence of an unbiased model under the unverified assumption that modeled relationships
apply across scales. But modeled relationships could generally be expected to differ across scales
of aggregation (i.e., the modifiable areal unit problem [63]). These considerations leave open the
alternative interpretation that the GNN model was biased.

The question of whether systematic disagreement between plots and pixels should be considered
evidence of model bias or a validation artifact has been explored in relation to predictor variable
uncertainty. Xu et al. [7] examined the effects of predictor variable uncertainty in the context of
ordinary linear regression. Using a field measurement protocol specifically designed to investigate
the effects of mismatches in scale and location between plots and pixels, they compared prediction
patterns against those expected from two types of predictor variable uncertainty. When the observed
predictor W is a noisy realization of the true or ideal predictor X (W = X + U, where the error term
U has zero mean and is independent of X such that E(W|X) = X), the Classical error model applies.
This corresponds to the situation in which plots are larger than pixels, or a species responds to
a long-term average but the corresponding predictor variable reflects a shorter time frame (as would
be the case for our mid-month insolation predictors, for example). When the observed predictor
is considered a smooth representation of the true or ideal predictor (X = W + U and E(X|W) = W),
the Berkson error model applies. This corresponds to the situation in which plots are smaller than
pixels, or a species responds to environmental conditions over a shorter timeframe than predictors
represent (as may be the case when species are affected by extreme conditions that are not resolved by
climatological predictors). Xu et al. [7] demonstrated that although Berkson error does cause apparent
systematic error in cross-validation outcomes, that pattern is no longer present when predictions
are compared to new reference observations made at the same scale. Linear models are not biased
by Berkson error. In contrast, Classical error does cause strong attenuation bias of the model itself,
affecting coefficients and introducing systematic error that does not go away when validation data are
scaled to match pixels.

The Berkson model fits the situation in which moderate resolution predictors are paired with FIA
plots, and the work of Xu et al. [7] would appear to validate the assertions of Riemann et al. [17] on
those grounds. However, several factors virtually ensure that actual predictor error deviates from
the Berkson model. Location mismatches caused by georeferencing or GPS error, for example, are
best represented by a mixture of Classical and Berkson error and can cause attenuation bias more
severe than Classical error associated with a scale mismatch [7]. Additionally, many applications
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build models using predictors with different patterns of uncertainty, some of which may be best
represented by Berkson error and some by Classical error. For species distribution models that utilize
environmental variables, the nature of predictor uncertainty may differ by species due to different
responses to environmental conditions (e.g., differing sensitivity to extreme vs. average conditions).
Finally, the analysis provided by Xu et al. [7] was based on ordinary linear regression. Both Berkson and
Classical error can cause attenuation bias and systematic prediction error when models are nonlinear
or nonparametric [64]. Not all systematic error in plot-pixel comparisons is indicative of model bias,
but without a thorough accounting of predictor uncertainty and its impact on predictions in a specific
modeling framework, it may be best to assume that some level of bias is present and some level of
correction is warranted.

The ultimate impact of attenuation bias on map use will presumably depend on map- and
application-specific factors. Attenuation does not degrade mean predictive accuracy, but bias can
dramatically affect spatial prediction patterns, particularly at the high end of observed values. Balsam
fir (species ABBA) provides a convenient illustration. MOSVR and SOSVR models explained nearly
identical amounts of variation in observed values, but MOSVR predictions had less systematic error
and SOSVR predictions had less scatter and lower total error (Figure 5; Figure 6). Spatial patterns of
predicted relative abundance were notably different at landscape scales (Figure 9).

Whereas MOSVR predicted values up to 100%, SOSVR predictions infrequently exceeded 75%.
The stronger attenuation bias of SOSVR generally suppressed local variability and produced a more
uniform pattern of relative abundance than expected. MOSVR reduced attenuation bias, producing
more realistic spatial patterns including patches of high relative abundance. These differences are
important. Balsam fir is the primary host of the eastern spruce budworm (ESBW; Choristoneura
fumiferana Clem.), a native insect that can cause widespread mortality of fir and spruce trees during
cyclic outbreaks [65]. Vulnerability to ESBW defoliation is in large part determined by balsam fir
relative abundance, with the greatest impact anticipated to occur in mature spruce-fir stands with fir
relative abundance exceeding 75% [66]. Systematic under-estimation of vulnerability will ultimately
cause underestimation of budworm impact. Additionally, because ESBW outbreak dynamics appear
to be influenced by spatial distributions of host- and non-host-dominant stands [67,68], accurate
predictions of tree species dominance and codominance should be important as well.

Finally, use of MOSVR presents certain challenges. Although the MATLAB implementation of
NSGA-II provides an option for parallel execution, in our case the total execution time required for
each species model ranged from 17–76 h, and averaged 46 h (using the MATLAB Parallel Computing
Toolbox with 12 workers, one worker per physical CPU core, and a 3.40 GHz CPU). However, we did
not systematically explore strategies to reduce execution time. Additionally, we recognize that outlier
removal is a weakness of our current implementation. Further development is warranted, and we are
investigating robust measures of systematic error as an alternative to outlier removal. Use of a GA for
model training bears certain implications for model interpretation, particularly in a multi-objective
framework. Similar performance characteristics may be achieved with different model specifications.
Consequently, models lying near to one another on the Pareto front may show substantive differences
in SVR parameters or variable/sample selections. MOSVR relative abundance models included on
average 21 of 94 variables and excluded on average 24 samples from model training (Supplementary
Table S2). For nearly all species, models included both spectral, terrain, and climatological variables.
We caution against over-interpretation of variable selections and sample exclusions at this point,
however, as GAs provide a group selection mechanism. Additional steps could be taken to evaluate
the relative importance of variables. Post-hoc analyses of response and predictor variable values could
be used to illuminate important relationships between variables (e.g., [69]). Inspection of variable
selection and variable importance patterns across the Pareto front may provide insight into how certain
variables influence attenuation. Similarly, further analysis of excluded samples might improve our
understanding of whether and how certain plot or image conditions are more likely to affect levels of
systematic error. This would require extensive analysis, however, since SVM model fit is determined
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by a subset of samples (SVs), and the selection or exclusion of a sample may or may not affect model fit
under different parameter settings. All of these issues warrant further work.
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Figure 9. Spatial predictions of relative abundance for species ABBA (balsam fir). Relative abundance
predicted from (a,c) MOSVR and (b,d) SOSVR models, across two randomly positioned sample
landscapes 12 km x 12 km in size (UTM zone 19N, WGS84). Masked areas include non-forest pixels,
forest pixels affected by canopy change during the study period, or missing data due to cloud or snow
cover. Predictions were truncated at 0 and 100%.

5. Conclusions

Patterns of error observed in predictions of tree species relative abundance were consistent
with strong attenuation bias caused by uncertainty in remote sensing and geospatial predictor data.
Comparing results across different predictive models, systematic error as a fraction of total error was
typically greatest in regression models that achieved the lowest total error. Pronounced underestimation
at high relative abundance caused large deviations between predicted and observed patterns of species
dominance and codominance. As expected, nearest neighbor methods produced better agreement with
observed dominance/codominance by preserving observed species associations. Yet predictive accuracy



Remote Sens. 2020, 12, 1739 22 of 25

was low and attenuation bias was high for individual species. Our multi-objective support vector
regression (MOSVR) approach effectively reduced systematic error for all species while maintaining
comparatively low total error, and improved predicted patterns of dominance/codominance to a level
approaching that of the nearest neighbor methods.

Others have made compelling arguments that physical differences in scale and location between
pixels and field plots are primary contributors to attenuation bias [7,8], and some have suggested
that the use of FIA or similar forest inventory data for model training may be ill-advised [7,13].
Yet FIA data is often used to train predictive models, and although error patterns at the scale of
predictions are not always reported (e.g., [5,70]), results are probably subject to some level of attenuation
bias. Not all systematic error is indicative of model bias, but lacking detailed knowledge of predictor
uncertainty and its impact in specific modeling frameworks, some level of correction is likely to be
warranted. In that case, MOSVR can provide an effective machine learning approach to the reduction
of systematic prediction error.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/11/1739/s1,
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