A Brief Overview of Maine's Net GHGs, Carbon Credit Markets, and Harvested Wood Product Accounting

Dr. Adam Daigneault University of Maine

Science and Practice: Addressing Forest Climate Change in Maine Webinar Series November 4, 2020

US Net Greenhouse Gas Emissions: How Does Maine Stack Up?

Greenhouse gas (GHG) emissions vary depending on where and what you measure...

Global Ag & Forest: +24% total GHGs

USA Forests: -11%

ME Forests: -70%

Maine GHG Emissions and Forest C Removals 1990-2017

% GHGs Removed by Forests

ME DEP (2020); USFS (2020)

How Does Maine Compare to Other States?

• GHG Emissions: Fossil-based emissions (EPA, 2020) Forest C Sequestration: Growing stock sequestration (USFS, 2020)

Fossil GHGs + Forest C Sequestration = Net GHGs

% Forest Removal = <u>
Forest Carbon Sequestration</u> Fossil GHG Emissions

Annual estimates averaged over 2008-2018 to minimize outlier bias

Fossil-based GHG Emissions by State (2008-2018 Average)

Forest Carbon Sequestration by State (2008-2018 Average)

Net GHGs by State (2008-2018 Average)

Percent GHG removal Rank by State (2008-2018 Average)

% Forest C Removal of Annual GHGs by State (2008-2018 Average)

A Very Quick Overview of Carbon Credits

Role of forests in GHG policy and carbon markets

- •Forests can be a large contributor to both GHG emissions and climate change mitigation
- •Mitigation potential from global forests varies with geography, carbon price, option, etc.
- •Many international climate policy proposals highly dependent on forest-based mitigation to minimize costs
- •Currently, only New Zealand includes the forest sector as 'mandatory' coverage in their emissions trading scheme (ETS)

How the Carbon Credit Market Works

Including incentives for forest carbon sequestration can reduce costs by 40-50%

Source: Tavoni, Sohngen, and Bosetti (2007)

...and most of the low-cost, land-based, GHG abatement is expected to come from improved forest management and planting more trees

- Maine stands to gain a lot from an efficient climate policy that incentivizes gains in forest carbon sequestration, particularly through improved forest management
- Maine could potentially gain from an increase in market demand for wood-based products, bioenergy, and biofuels, especially if wood is recognized globally as a low-carbon and sustainable source

Notes on carbon credits/markets

- •Additionality, permanence & leakage
 - Are credits being issued for real gains in C?
- •Voluntary vs. Regulatory Markets
 - How flexible do you want to be?
 - Are you willing to enter a 100 year commitment?
- •Transaction costs for carbon credit project development
 - Can cost \$100,000+
 - Likely need 1,000s of acres to be viable

Estimating Carbon in Maine's Harvested Wood Products

Smith et al (2006)

Forest Product Pool Decay Rates (based on Smith et al. 2006)

Aggregated end use products simulated by the Carbon Object Tracker and associated end use product categories defined by Smith et al. 2006.

Carbon Object	Smith et al. 2006 Table D3	
Tracker decay pools	End use or product	Half-life (years)
Single family homes	New residential construction: single family	100
Multi-family homes	New residential construction: multifamily	70
Other products	New residential construction: mobile homes	12
Repair & furniture	Residential upkeep and improvement	30
Commercial buildings	New non-residential construction: all except railroads	67
Other products	New non-residential construction: railroad ties	12
Other products	New non-residential construction: railcar repair	12
Repair & furniture	Manufacturing: household furniture	30
Repair & furniture	Manufacturing: commercial furniture	30
Other products	Manufacturing: other products	12
Shipping	Shipping: wooden containers	6
Shipping	Shipping: pallets	6
Shipping	Shipping: dunnage etc.	6
Other products	Other uses for lumber and panels	12
Other products	Solid wood exports	12
Paper	Paper	2.6
	Smith et al. 2006 Table D5	
Landfill degradable	Landfill degradable	14

Note: Single and multi-family homes and commercial buildings are listed as 'Construction' for brevity in the top figure conceptually depicting COT model dynamics.

Average Maine Sawlog Carbon Flow

Average Maine Pulplog Carbon Flow

Percent Harvest Stored in Products + Landfills Over Time

Smith et al (2006)

Maine Total Harvested Wood Product Carbon

Maine 100-yr Mean HWP Carbon Flow (MtC)

What if we shift all harvests to sawlogs?

Contact Details

Dr. Adam Daigneault E.L. Giddings Asst Prof of Forest, Conservation, and Recreation Policy University of Maine 5755 Nutting Hall, Rm 219 adam.daigneault@maine.edu