
Kasey Legaard
UM, Research Professor, Geospatial Analytics and Machine Learning

Erin Simons-Legaard
UM, Research Professor, Forest Landscape Modeling

Aaron Weiskittel
UM, Director, Center for Research on Sustainable Forests

UMaine
Intelligent 
GeoSolutions



IGS overview
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Applied geospatial research and technology transfer initiative

Purpose: Bring forest maps to market to support R&D and data 
production targeted to user needs

• License of map products to end users 
• One time fee
• Through service or research agreements
• Managed by UM Dept. of Industrial Cooperation
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Legaard et al. 2015. 
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Simons-Legaard et al. 2016. 



IGS origins: Maine landscape change
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Landis-II forest landscape model:

• Models cohorts within stands
• Stands are groups of like cells
• Cohorts within cells are defined by species and age
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Species abundance (% biomass):

Balsam fir
Red, white, black spruce
E. White pine
N. White cedar
E. Hemlock

Sugar and Red maple
American beech
Yellow birch
Paper birch
Green ash

• 8 Landsat images, acquired late April through 

mid-October

• Bioclimatic variables 
(USFS RMRS, Moscow Forestry Sciences Laboratory)

• Terrain attributes 
(from National Elevation and Hydrography Datasets)

Tree species mapping
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Tree species mapping

Public plot locations shown. True 
plot coordinates provided through 
collaborative agreement with the 
USFS NRS FIA Program.

FIA plot (+ location error), 
superimposed over 30 m pixels:



Location mismatch between 
plots and pixels

Scale mismatch between 
plots and pixels

Tree species mapping
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Balsam fir prediction

XGBoost gradient boosting algorithm

• Minimizes total error, in part by 
predicting values nearer to the 
mean

= attenuation bias



Multi-objective machine learning
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Minimization of total 
prediction error leads to 
high bias when fitting 
models subject to 
uncertainty in predictor 
variables

We would prefer low error 
and low bias
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Multi-objective machine learning
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Brereton and Lloyd. 2010. 

Use a flexible machine learning algorithm 
capable of fitting complex relationships

- Support Vector Machines (SVMs)

Simultaneous minimization of total 
prediction error and bias:

Use a training process capable of 
evaluating a lot of different SVMs

- Genetic Algorithms (GAs)
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Multi-objective machine learning

Genetic recombination:

parents

offspring

Genetic mutation:

GA operates on a population of SVMs

• e.g., 1000 individual models, each competing to reproduce

• Survival of the fittest, where fitness is determined by 
overall prediction error and bias



Multi-objective machine learning
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Evaluate fitness 
of current 
generation

Select parents of 
next generation

Apply genetic 
operations to obtain 

next generation

Train current 
generation of models
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Multi-objective machine learning

Multi-objective support vector regression –
simultaneous minimization of total and systematic RMSE:

Population status 
After 10 generations
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Multi-objective machine learning

Population status 
After 20 generations

Multi-objective support vector regression –
simultaneous minimization of total and systematic RMSE:
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Multi-objective machine learning

Population status 
After 40 generations

Multi-objective support vector regression –
simultaneous minimization of total and systematic RMSE:
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Multi-objective machine learning

Population status 
After 80 generations

Multi-objective support vector regression –
simultaneous minimization of total and systematic RMSE:
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Balsam fir model prediction
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Balsam fir model comparisons

Multi-objective support vector regression maintains accuracy while reducing bias

IGS



Black
spruce

Balsam fir Red
spruce

White
spruce
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Forest disturbance classification

Accuracy achieved (Landsat imagery): 
• Overall accuracy >97%
• Change class accuracy >90%, with no prediction bias



Forest disturbance classification error
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IGS
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Forest disturbance classification

Training/validation samples

High accuracy and control of 
omission and commission error 
requires a large number of 
reference samples

Traditional approach relies on 
visual image interpretation

Multi-objective outcomes enable a 
semi-supervised approach where 
the machines do most of the work
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Forest disturbance classification

Compare multiple Pareto-
optimal maps, and focus 
attention where maps 
disagree
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Forest disturbance classification

Training/validation samples
Human interpreted 

training/validation samples
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Forest disturbance classification

High accuracy with no cloud masking 

SVMs are trained to distinguish cloud 
from canopy disturbance
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Forest disturbance classification

Time 1

Time 2

No examples of time 1 cloud 
shadow in the initial training data

GA used to train the SVMs provides 
simple way to correct the error –

no masks, no editing
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Classification bias and fragmentation metrics
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log scale 
on y axis

Exponential increase in metric 
error (and error uncertainty) 
with increasing map error

Recommendations include…
• Accurate maps
• Balanced classification error



IGS products & applications

Low-cost, high-value forest map products:

• Tree species distribution and abundance

• Forest types

• Disturbance history, monitoring

• Regeneration status

• Susceptibility, vulnerability to forest pests

• Wildlife habitat and ecosystem services

• Landscape change (retrospective and prospective)

• Regular updates
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IGS products & applications

Multi-year collaboration with the UMaine Advanced Computing Group

• ML code base run on UMaine supercomputing cluster
• Highly automated workflows run on UMaine cloud resources



IGS products & applications
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Forest type mapping from advanced ML and 10 m Sentinel 2 imagery 
(+ bioclimatic and terrain variables)

• Heavily automated where automation makes sense

• High accuracy; control of error distributions

• Efficient use of available training data; ability to target 
acquisition of additional training data to high value locations

• Need for post-processing, product editing is minimal to none



A digression on pixel resolution…

30 m Landsat

30 m NLCD

5 m pan-sharpened Landsat

5 m MeLCD



A digression on pixel resolution…

30 m Landsat

30 m NLCD

5 m pan-sharpened Landsat

5 m MeLCD
?



A digression on pixel resolution…

30 m Landsat

10 m Sentinel 2

5 m pan-sharpened Landsat

<1 m NAIP
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IGS products & applications

Use of USFS FIA forest plot data (i.e., confidential plot locations) 
for model training and validation

• Permits classification by FIA forest type:

- Maple/beech/birch
- Spruce/fir
- Aspen/birch
- White/red/jack pine
- Oak/hickory
- Elm/ash/cottonwood
- Oak/pine
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MeLCD accuracy 
assessment 
locations
(n = ~1600)

USFS FIA plots 
(n = ~3600)

Public plot locations shown. True 
plot coordinates provided through 
collaborative agreement with the 
USFS NRS FIA Program.


