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Applied geospatial research and technology transfer initiative
Purpose: Bring forest maps to market to support R&D and data

production targeted to user needs
License of map products to end users

 One time fee
Through service or research agreements

Managed by UM Dept. of Industrial Cooperation
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IGS origins: Maine landscape change
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Maine landscape change
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Simons-Legaard et al. 2016.



IGS origins: Maine landscape change
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Landis-Il forest landscape model:

 Models cohorts within stands
e Stands are groups of like cells
* Cohorts within cells are defined by species and age
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Species abundance (% biomass):

Balsam fir Sugar and Red maple
Red, white, black spruce American beech

E. White pine Yellow birch

N. White cedar Paper birch

E. Hemlock Green ash

* 8 Landsat images, acquired late April through
mid-October
* Bioclimatic variables
(USFS RMRS, Moscow Forestry Sciences Laboratory)
* Terrain attributes
(from National Elevation and Hydrography Datasets)
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FIA plot (+ location error),
superimposed over 30 m pixels:

Public plot locations shown. True
plot coordinates provided through
collaborative agreement with the
USFS NRS FIA Program.




Effects of Mismatches of Scale and Location
between Predictor and Response Variables
on Forest Structure Mapping

Yaguang Xu, Brett G. Dickson, Haydee M. Hampton, Thomas D. Sisk, Jean A. Palumbo, and John W. Prather

Location mismatch between
plots and pixels
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Figure 9. Plot of predicted basal area against ground
measured basal area (units: m?/ha).
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Figure 4. Plot of predicted basal area against basal
area measured in ground subplot (units: m?/ha).



XGBoost gradient boosting algorithm

* Minimizes total error, in part by
predicting values nearer to the
mean
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Multi-objective machine learning
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Minimization of total
prediction error leads to
high bias when fitting
models subject to
uncertainty in predictor
variables

Preferred

/ outcome

Total Prediction Error

We would prefer low error
and low bias

Systematic Error (bias)
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¢ Multi-objective machine learning

Simultaneous minimization of total
prediction error and bias:

o
3

Use a flexible machine learning algorithm - |

capable of fitting complex relationships 8 vl
- Support Vector Machines (SVMs) PPV
Use a training process capable of , , ; «
evaluating a lot of different SVMs x;-/%éj%
\
- Genetic Algorithms (GAs) oo & P *
x}axf* f/
)/
x-\\nr/',’.u

1%

Brereton and Loyd. 2010.
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GA operates on a population of SVMs
e.g., 1000 individual models, each competing to reproduce

Survival of the fittest, where fitness is determined by
overall prediction error and bias

Genetic recombination: Genetic mutation:

parents

Q

offspring

- —
| —
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Train current

/) generation of models \

Evaluate fitness

Apply genetic
operations to obtain of current
next generation generation

\ Select parents of (/

next generation
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Multi-objective machine learning
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Multi-objective support vector regression —
simultaneous minimization of total and systematic RMSE:
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Multi-objective machine learning
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Multi-objective support vector regression —

simultaneous minimization of total and systematic RMSE:
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Multi-objective machine learning
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Multi-objective support vector regression —
simultaneous minimization of total and systematic RMSE:
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Multi-objective machine learning
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Multi-objective support vector regression —
simultaneous minimization of total and systematic RMSE:
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Balsam fir model comparisons

(a) ABBA, MOSVR (b) ABBA, SOSVR (c) ABBA, RF

IGS

ean CV Residual
ean CV Residual
ean CV Residual




Balsam fir 4 _aff £ L ] Red
spruce




Forest disturbance classification

Accuracy achieved (Landsat imagery):
e Overall accuracy >97%
* Change class accuracy >90%, with no prediction bias

8/16/2019



Forest disturbance classification error

How Similar Are Forest Disturbance Maps Derived
from Different Landsat Time Series Algorithms?

Warren B. Cohen #, Sean P. Healey 2, Zhigqiar|
C. Kenneth Brewer >, Evan B. Brooks ¢, Noel G
Robert E. Kennedy ?, Thomas R. Loveland 1,
James E. Vogelmann !°, Curtis E. Woodcock 12
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Training/validation samples

8/16/2019

High accuracy and control of
omission and commission error
requires a large number of
reference samples

Traditional approach relies on
visual image interpretation

Multi-objective outcomes enable a

semi-supervised approach where
the machines do most of the work

25



)
: Forest disturbance classification
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Forest disturbance classification
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Human interpreted
training/validation samples

Training/validation samples

8/16/2019 27
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High accuracy with no cloud masking

SVMs are trained to distinguish cloud
from canopy disturbance

28



+

No examples of time 1 cloud
shadow in the initial training data

ety

~ GA used to train the SVMs provides
simple way to correct the error —
no masks, no editing




Bay of
Fundy

Northern Maine Study Area

- Mxed Hardwood

- Intolerant Hardwood
- Tolerant Hardwood

Hardwood-Conifer

Conifer-Hardwood

I Mixed Conifer
- Spruce-Fir

Nonforest




Classification bias and fragmentation metrics
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On the accuracy of landscape pattern analysis using remote
sensing data

Guofan Shao - Jianguo Wu

log scale

/ on y axis

Exponential increase in metric
error (and error uncertainty)
with increasing map error

i

Recommendations include...
* Accurate maps
 Balanced classification error

Errors of landscape indices

W

Errors of image data classification




@ IGS products & applications

Low-cost, high-value forest map products:

* Tree species distribution and abundance

* Forest types

e Disturbance history, monitoring

* Regeneration status

e Susceptibility, vulnerability to forest pests

* Wildlife habitat and ecosystem services

e Landscape change (retrospective and prospective)

* Regular updates




{ |GS products & applications

Multi-year collaboration with the UMaine Advanced Computing Group

ML code base run on UMaine supercomputing cluster
* Highly automated workflows run on UMaine cloud resources

. Advanced
® Computing
Group

8/16/2019
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|GS products & applications
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Forest type mapping from advanced ML and 10 m Sentinel 2 imagery
(+ bioclimatic and terrain variables)

 Heavily automated where automation makes sense

e High accuracy; control of error distributions

e Efficient use of available training data; ability to target
acquisition of additional training data to high value locations

* Need for post-processing, product editing is minimal to none

8/16/2019
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¢ A digression on pixel resolution...

zwra 5 M pan-sharpened Landsat §
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A digression on pixel resolution...

g 5 M pan-sharpened Landsat




@ IGS products & applications
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Use of USFS FIA forest plot data (i.e., confidential plot locations)
for model training and validation

* Permits classification by FIA forest type:

- Maple/beech/birch

- Spruce/fir

- Aspen/birch

- White/red/jack pine
- Oak/hickory

-  Elm/ash/cottonwood
- Oak/pine

8/16/2019
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MeLCD accuracy USFS FIA plots
assessment (n =~3600)

locations
(n =~1600)




