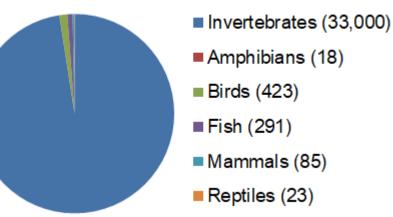
An Overview of Climate Effects on Forestland Biodiversity in Maine

Erin Simons-Legaard Assistant Research Professor in Forest Landscape Modeling, School of Forest Resources, University of Maine

Amanda Shearin Cross Wildlife Resource Supervisor and Climate Change Coordinator, Maine Department of Inland Fisheries and Wildlife

January 6, 2021


Presentation Overview

- How is climate change affecting Maine's species and forestlands?
- Case studies (6)
 Lowland wetlands to mountaintops
- Conservation opportunities
- Discussion

Maine: An Ecological Transition Zone

Fish and Wildlife Species

Other Taxa Groups

Plants (2100), Phytoplankton (310), Macrophytes (271), Fungi (3500)

Maine's 2015 Wildlife Action Plan

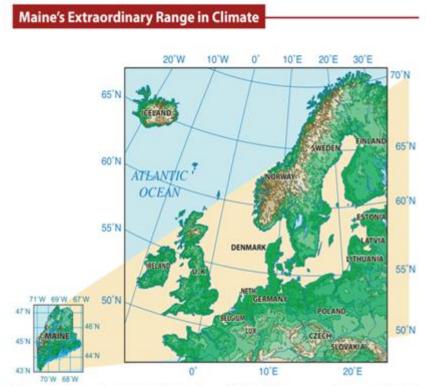


Figure 4 The climate gradient that exists in just three degrees of latitude in Maine occurs over 20 degrees of latitude in Europe, a distance approximately twice the length of California. Figure by K. Maasch.

Maine's Climate Future 2009

Climate Change Impacts to Biodiversity

MAINE'S WILDLIFE ACTION PLAN

Prepared by Maine Department of Inland Fisheries Wildlife

in collaboration with

Maine's Conservation Partners September 2015

What makes a species vulnerable*?

Vulnerability Characteristic

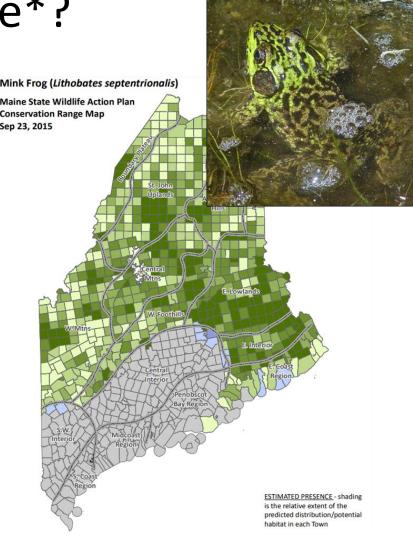
Habitat Specificity

Edge of Range

Environmental Tolerances

Interspecific or Phenological Dependencies

Mobility


Pathogens or Invasives Habitat specificity
 Edge-of-range
 Environmental or physiological tolerance

4.Interspecific or phenological dependence

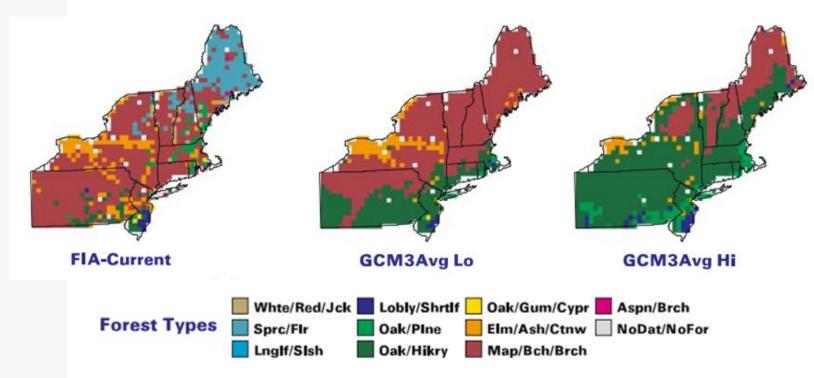
5. Mobility

6.Pathogens or invasive species

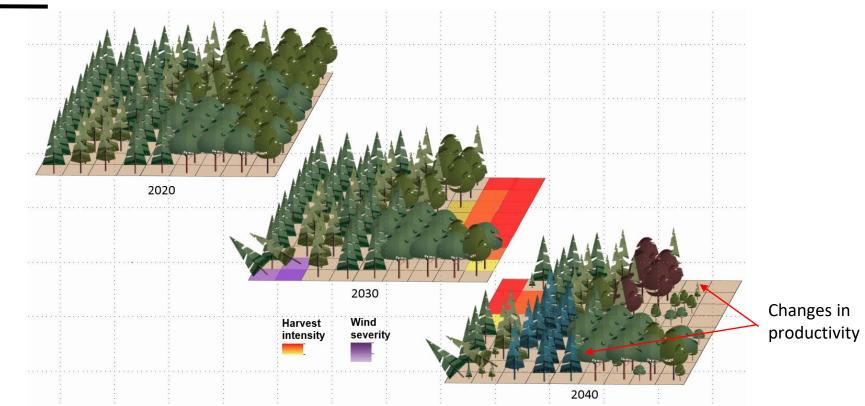
*Or a combination of these plus other factors

Impact Examples

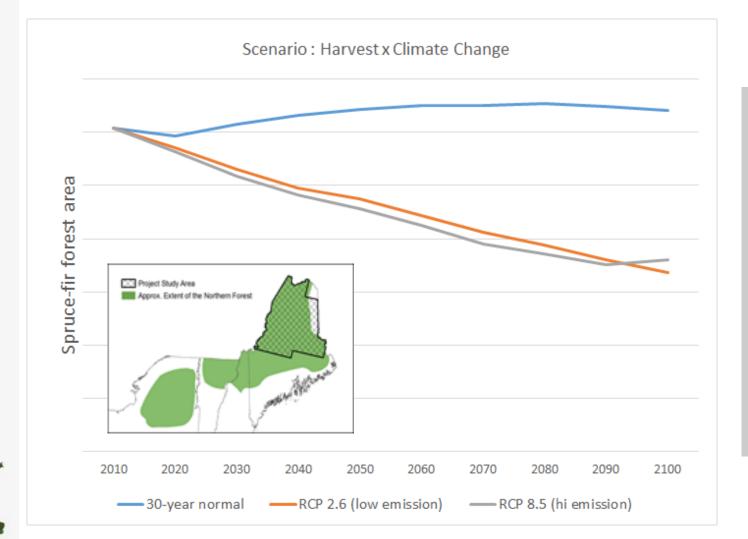
- Changing forests
 - Spruce-fir decline
 - Snowshoe hare
- Warming winter
 - Declining snowpack and "early" spring
 - Moose-tick
 - Vernal pools
- Warming waters
 - "Cold" water fishery
 - Brook trout
- Disappearing refugia
 - Shifting treeline
 - Alpine/Montane habitats
- Stressor interactions
 - Fragmentation
 - Wood turtle



Modeling potential climate change impacts on the trees of the northeastern United States

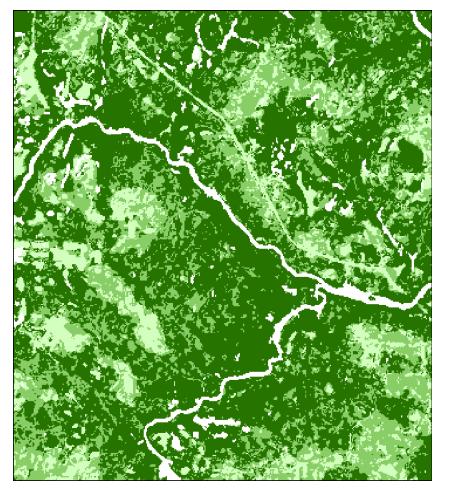

Louis Iverson · Anantha Prasad · Stephen Matthews

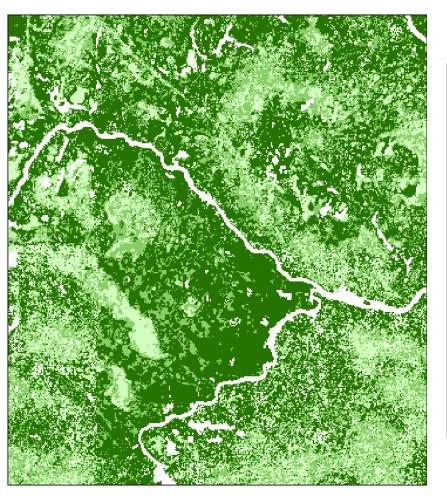
Changing Forests


- Climate-envelope models suggest that climate change(s) will reduce habitat suitability for balsam fir and spruce trees
- Projections of suitability only, ignores persistence of current trees or interactions with other disturbances

Changing Forests

• Unlike the climate-envelope approach, LANDIS-II first models the current forest and then simulates future succession and disturbance, which can include climate change


Changing Forests



- Spruce-fir forest area stable when projected under 30-year normal climate
- But declining under climate change irrespective of RCP (low vs high emission).

2010

- Trend is for sprucefir forest to transition to greater hardwood dominance after harvest, particularly along stand edges.
- In contrast, forest type relatively stable in unharvested areas.

Changing Forests

Vulnerability Characteristic

Habitat Specificity

Edge of Range

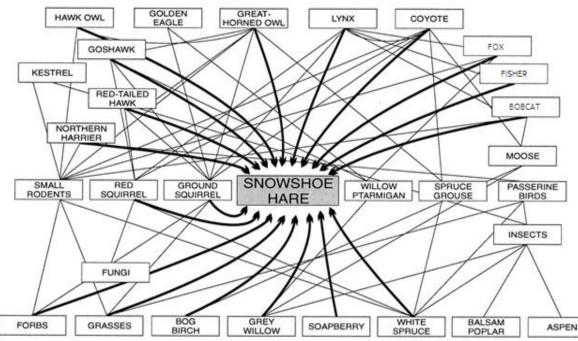
Environmental Tolerances

Interspecific or Phenological Dependencies

Mobility

Pathogens or Invasives Snowshoe hare/Canada lynx

- Range includes boreal, sub boreal and upper montane forests
 - ~10 year population cycles



sciencephotolibrary

- Primary food item for the federally-threatened Canada lynx
- Regional "keystone" species

Adapted from Stenseth et al. 1997 https://doi.org/10.1073/pnas.94.10.5147

Changing Forests

Vulnerability Characteristic

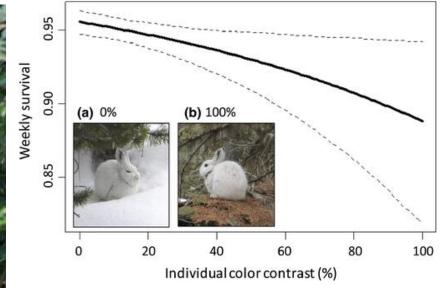
Habitat Specificity

Edge of Range

Environmental Tolerances

Interspecific or Phenological Dependencies

Mobility


Pathogens or Invasives

Snowshoe hare/Canada lynx

Winter densities of hares are 3X higher in regenerating stands with high conifer stem densities (>12,000 stems/ha)

• Adapted for deep snow cover

Zimova et al 2016 doi: 10.1111/ele.12568

Laura Poppick

Warming Winters

Vulnerability Characteristic

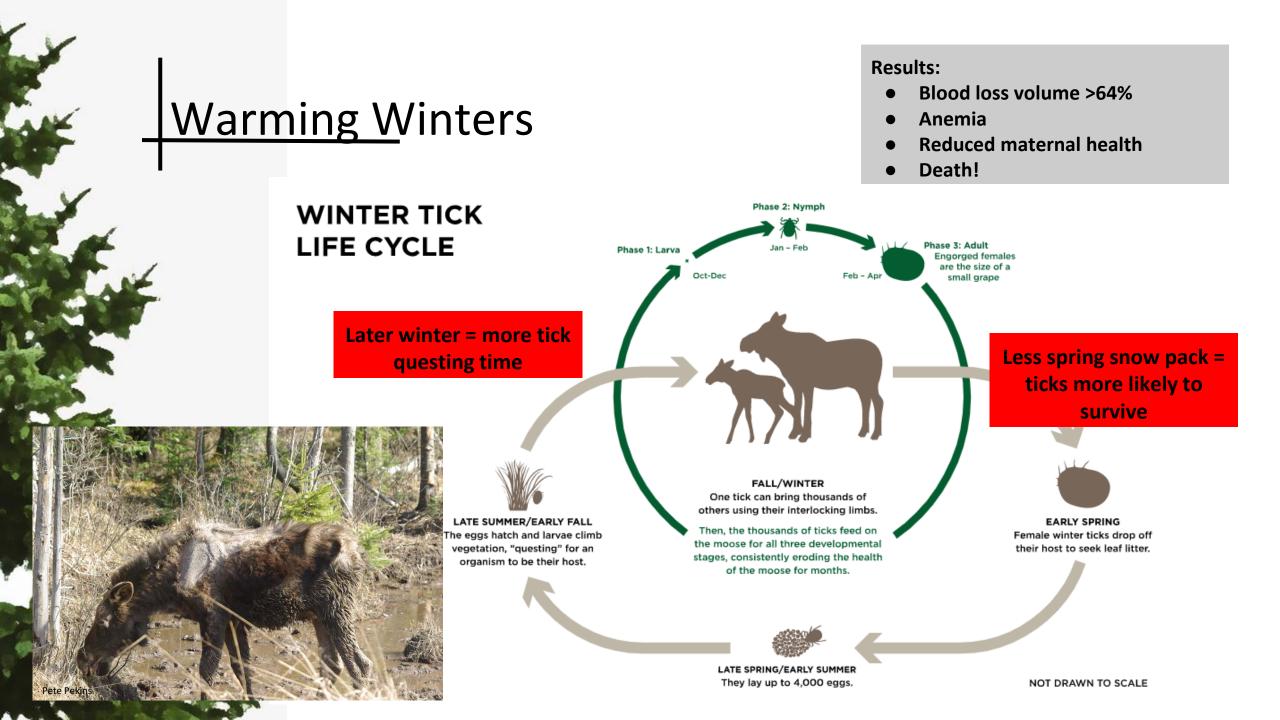
Habitat Specificity

Edge of Range

Environmental Tolerances

Interspecific or Phenological Dependencies

Mobility


Pathogens or Invasives • Moose/winter tick

- Maine: largest moose population in lower 48 states
- 70% annual calf mortality 2014-2016
 - Up to 70,000 ticks/calf

- Winter ticks recorded since 1930s
- Winter tick outbreaks in last 5 out of 10 years

Warming Waters

Vulnerability Characteristic

Habitat Specificity

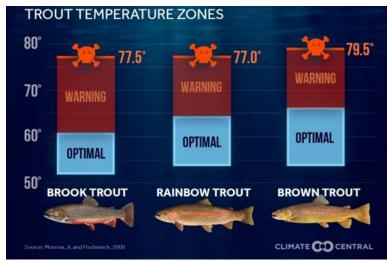
Edge of Range

Environmental Tolerances

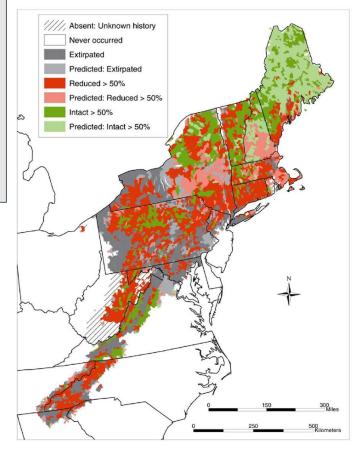
Interspecific or Phenological Dependencies

Mobility

Pathogens or Invasives



 Maine is the only state with extensive intact populations of wild, self-reproducing brook trout in lakes and ponds


 Stream temperature controls distribution and abundance

Adults can tolerate up to 65-67 deg F but prefer cooler

• Young trout survivorship drops above 60 deg F

Smith & Sklarew 2013 https://doi.org/10.1016/j.swaqe.2013.08.001

Warming Waters

Vulnerability **Characteristic**

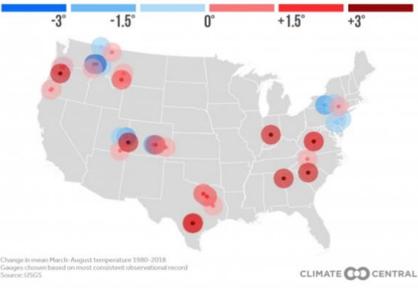
Habitat **Specificity**

Edge of Range

Environmental **Tolerances**

Interspecific or Phenological **Dependencies**

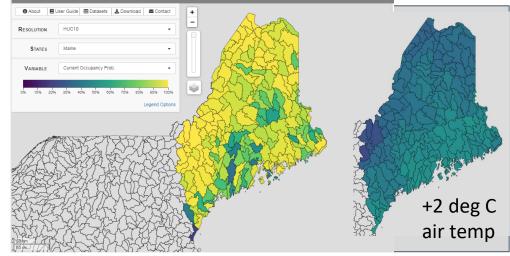
Mobility


Pathogens or Invasives

Eastern brook trout

• River and stream temperatures are rising

River & Stream Temperatures


Change in average temperature since 1990

≥USGS

ICE | STREAM TEMPERATURE AND BROOK TROUT OCCUPANCY IN THE NORTHEAST

https://www.usgs.gov/apps/ecosheds/ice-northeast/

Warming Winters

Vulnerability Characteristic

Habitat Specificity

Edge of Range

Environmental Tolerances

Interspecific or Phenological Dependencies

Mobility

Pathogens or Invasives Vernal pools species

- Highly specialized <u>forest</u>ecosystem
- Hydroperiod drives everything
 - Dependent upon snowpack and spring precipitation
- Four indicator species
 - But host many other species
 - Species tied to narrow
 temperature and chemical
 characteristics (oxygen, salinity, etc.)

Warming Winters

Vulnerability Characteristic

Habitat Specificity

Edge of Range

Environmental Tolerances

Interspecific or Phenological Dependencies

Mobility

Pathogens or Invasives Habitat Impacts

Less snowpack/more episodic precipitation plus greater evapotranspiration = earlier drying (Brooks 2004)

Species Impacts

- Less snow = lower hibernacula quality (Groff et al. 2016)
- Warmer springs = earlier breeding; mismatched phenology (Gibbs and Breisch 2001)

Disappearing Refugia

Subalpine/alpine habitats

Vulnerability Characteristic

Habitat

Specificity

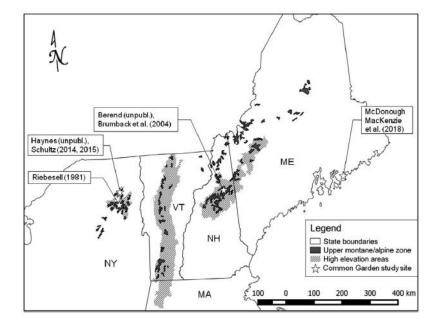
Edge of Range

Environmental Tolerances

Interspecific or Phenological Dependencies

Mobility

Pathogens or Invasives Transitional zone between forest (fir-spruce) at lower elevations and alpine tundra at higher elevations (>1100 m).


Areas of rare, specialist species and unique biodiversity (lichens, mosses, low-growing plants).

 Tree establishment limited by harsh winter conditions.

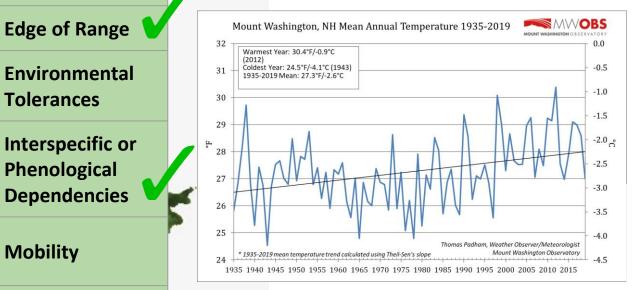
• Only 34 km² in the Northeast

Berend et al. 2019 doi: 10.3119/18-16, Kimball & Weihrauch 2000

Habitat

Specificity

Tolerances


Phenological

Characteristic

Disappearing Refugia

Subalpine/alpine habitats

Mountaintops are getting warmer (e.g., 1-3 deg F on Mount Washington)

Pathogens or Invasives

Mobility

Warmer temps (w/ less ice, slower wind?) may allow tree encroachment

Habitat Fragmentation: Exacerbated by Climate Change

Vulnerability Characteristic

Habitat Specificity

Edge of Range

Environmental Tolerances

Interspecific or Phenological Dependencies

Mobility

Pathogens or Invasives Wood Turtle

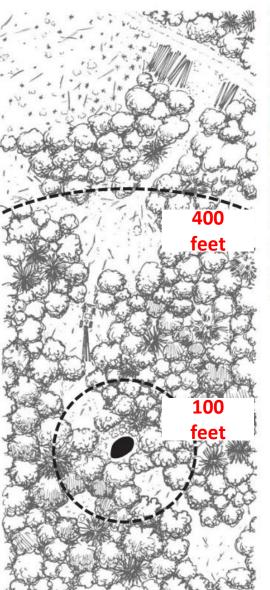
- Long-lived species (> 58 years) associated with streams and riparian habitats
- Farthest ranging turtle in Maine
 - 2.3 miles along streams
 - 623 feet into uplands
- Biggest stressors
 - Habitat fragmentation
 - Road mortality
 - Illegal collection
 - Two adult mortalities per year: extirpated in 80 years (Compton et al. 2002)

A Newer, Compounding Stressor: Climate Change

 Streams: need some flow to maintain gravel bars for breeding but not so much as to completely destroy them

าเ	mary	High Impact or Certainty		Moderate Impact or Certainty		Low Impact or Certainty		
	Case Studies	Climate Vulnerability Characteristic						
		Habitat Specificity	Edge of Range	Environmental Tolerances	Interspecific or Phenological Dependencies	Mobility	Pathogens or Invasives	
	Snowshoe Hare & Canada lynx				Predation/ Competition		Pathogens?	
	Moose		At southern edge				Epizootics	
	Vernal Pool Organisms							
	Brook Trout				Competition		Invasive species	
	Alpine & Katahdin Arctic Butterfly				Metamorphosis			
R	Wood Turtle							

Conservation and Management Opportunities


Type of Action	Habitat Specificity	Edge of Range	Environmental Tolerances	Interspecific or Phenological Dependencies	Mobility	Pathogens or Invasives
Species-level Action	-	Assisted migration, planting	Conserve genetically diverse populations	Conserve genetically diverse populations	Assisted migration, planting	Population and pest management

Conservation and Management Opportunities

	Type of Action	Habitat Specificity	Edge of Range	Environmental Tolerances	Interspecific or Phenological Dependencies	Mobility	Pathogens or Invasives
	Species-level Action	-	Assisted migration, planting	Conserve genetically diverse populations	Conserve genetically diverse populations	Assisted migration, planting	Population and pest management
5	Habitat-level Action	Identify and map habitats; conserve habitats and buffers	Maintain and restore habitat connectivity	Conserve a range of habitats and connections among them; Conserve habitat quality	Conserve a range of habitats and connections among them; Conserve habitat quality	Maintain and restore habitat connectivity	Maintain and restore healthy habitats that are more resistant to pest invasions

Example: Vernal Pool Species

Vulne	rability Characteristic	Management Action
Habita	at Specificity	Identify and include vernal pools in forest management plans
Edge o	of Range	n/a
Enviro	onmental Tolerances	Maintain canopy around pool
	pecific or ological Dependencies	Maintain canopy around pool
Mobil	ity	Provide canopy cover among pools
Patho	gens or Invasives	Maintain canopy around pool

Ecologically sensitive forest management activity around a vernal pool (dark oval at bottom center) located in a mature mixed forest. Note that implementation of the vernal pool Habitat Management Guidelines (HMGs) calls for decreasing timber harvest intensity with increasing proximity to those pools with breeding evidence of amphibian indicator species. HMG zones are drawn to scale. (M. McCollough)

FIGURE 3:

Forestry Management Guidelines for Vernal Pool Wildlife Calhoun and deMaynadier 2004

Discussion

In your work, what are you doing on the ground now that may help mitigate climate vulnerability?

Habitat Specificity	Edge of Range	Environmental Tolerances	Interspecific/ Phenological Dependencies	Mobility	Pathogens/ Invasives
Identify and map habitats; conserve habitats and buffers	Maintain and restore habitat connectivity	Conserve a range of habitats and connections among them; Conserve habitat quality	Conserve a range of habitats and connections among them; Conserve habitat quality	Maintain and restore habitat connectivity	Maintain and restore healthy habitats that are more resistant to pest invasions

Final Thoughts

• How do we know if our actions are successful?

Climate Change Impacts to Habitats

- Most vulnerable habitats and natural communities (out of 21)
 - Alpine and montane systems*
 - Peatlands*
 - Northern rivershores
 - Spruce flats
 - Cedar lowlands
 - *Contain highest percentage of highly vulnerable species