

Balance of sources and sinks

A Large and Persistent Carbon Sink in the World's Forests

Yude Pan,¹* Richard A. Birdsey,¹ Jingyun Fang,^{2,3} Richard Houghton,⁴ Pekka E. Kauppi,⁵ Werner A. Kurz ⁶ Oliver I. Phillins ⁷ Apatoly Shvidenko ⁸ Simon I. Lewis ⁷ Josep G. Canade

Regions of the World Other No Data/Other Countries Tropical Asia Africa Americas Temperate Continental US & S. Alaska Europe

China Japan/Korea

Australia/NZ

Boreal

Canada N. Europe

Asian Russia

European Russia

19 AUGUST 2011 VOL 333 SCIENCE www.sciencemag.org

Forest Carbon Flux 1990-1999 Forest Carbon Flux 2000-2007

Tropical Regrowth Carbon Flux 1990-1999

Tropical Regrowth Carbon Flux 2000-2007 **Tropical Gross Deforestation** C Emissions 1990-1999

Tropical Gross Deforestation C Emissions 2000-2007

The State of Maine's Carbon Budget (v1.0)

Xue Bai¹, Adam Daigneault¹, Ivan Fernandez², Jereme Frank³, Daniel Hayes¹, Beverly Johnson⁴, Xinyuan Wei¹, Aaron Weiskittel⁵

The State of Maine's Carbon Budget

Atmosphere

Wetlands

Fossil Emissions Agriculture

Forests

Coastal Ecosystems

Urban

Inland Waters

Trees take up C from the atmosphere through photosynthesis and adds it as biomass. As the C cycles through the ecosystem it is either returned to the atmosphere through decomposition or incorporated into the soil. In managed forests, live biomass is also removed in harvest and that C can be made into short- (e.g., pulp) or long- (e.g., sawlogs)

term products. About 89% of Maine consists of forests (the most of any state), which account for the vast majority of C uptake and storage in this budget.

Inland Waters

Sedimentation

Wood Harvest

Table 1. Absolute and relative estimates of land area (millions of acres) and carbon(Megagrams) as well as carbon density (Mg C per acre) in 2016 by primary land type in Maine

	Area		Carbon			
Land Type	M acres	% Total	Stock (Mg C)	% Total	Density (Mg C/acre)	
Forest	17.30	87.6%	2,071,219,199	88.7%	122	
Ag (soil only)	1.25	6.3%	96,303,017	4.1%	77	
Wetland	0.28	1.4%	71,229,883	3.1%	257	
Salt Marshes (upper 1 m)	0.02	0.1%	2,518,500	0.1%	140	
Seagrasses (upper 1 m)	0.03	0.2%	1,625,600	0.1%	51	
Urban	0.87	4.4%	91,015,658	3.9%	105	
Total	19.75	100.0%	2,333,911,856	100.0%	118	

Compiled by the Forest Climate Change Initiative, Center for Research on Sustainable Forests at the University of Maine.

1,000s metric tons of C per year

1,000s metric tons of C per year

\mathbf{T}	\uparrow							
4,897 <i>0,555</i>	3,026	7,151	country on a 5- to 10-	e, which updates its Forest year cycle. Fluxes in other such as with the National				
Em	P	ptake	Forest Component	2006 Stock (MMTC)	2016 Stock (MMTC)	Stock Change (MMTC/yr)		
		¥	Live Biomass	385	412	2.675		
Transportation -2,333 Residential -775 Industrial -658 Electric Power -545 Commercial -490 Waste	Wood Products	Forests Live Biomass +2,675	Dead Organic Matter Soil Carbon	45 1,612	47 1,613	0.132		
	+383 Landfill +206 Pulp	Dead Biomass +132 Soils +133 43	Total Forest Carbon	2,042		2.940		
-95	Wood Har	vest		A SEPTEM				

The State of Maine's Carbon Budget: Key Findings

Key Findings

- GHG emissions in Maine are dominated by burning fossil fuels, primarily from the transportation sector, but with a sharp decline in electric power emissions over the last decade.
- Carbon 'offsets' are estimated as 55% for forest growth and 75% for the total annual C cycle.
- Critical uncertainties in the budget arise from undersampled or unknown components. Improved assessments require advances in stock quantification and flux monitoring.

The goal is to develop a reliable and accurate operational carbon monitoring system based on new measurements, maps, and models.

 NASA Remote Sensing of **Forest Health** NSF Informatics and **Smart Data for Forests** NASA Forest Carbon Estimation CFRU Enhanced Forest Inventory Maine Forest Ecosystem **Status and Trends**

In Maine, atmospheric GHGs are measured at a NOAA "tall tower" in Argyle, and the Howland Research Forest is one of the longest-running ecosystem C flux monitoring sites in the world.

Thank You! daniel.j.hayes@maine.edu

WHEATLAND GEOSPATIAL LAB