

Center for Advanced Forestry Systems Strategic Plan & Technology Roadmap

University of Idaho

Vision

Support the US forest industry by solving problems with targeted, applied, and collaborative research coordinated across multiple universities

Mission

Optimize genetic and cultural management regimes to produce high-quality raw forest materials for new and existing products by convening scientists from different disciplines to define and conduct collaborative applied research on specific and compelling issues relevant to industry that transcend species, regions, and disciplinary boundaries

Objectives

- 1. Serve as national organization for R&D relevant to the forest industry
- 2. Coordinate and perform national research activities across multiple sites that align with the prioritized needs of forest industry
- 3. Document and communicate key research outcomes to relevant stakeholders
- 4. Provide a long-term strategic vision for research needs of forest industry
- 5. Convene leading scientists from academia and industry who are prepared to address new/unforeseen challenges to the forest industry, such as changing markets.
- 6. Create national networking opportunities for universities and forest industry

General Center Organization

Lead Site

- Center Director
- Program Manager

Assessment Coordinator

Director's Board

University Site 1

- Site Director
- Site Manager
- Project Scientist
- Students & Post-Docs

Industrial Members

- Primary
- Secondary
 - Affiliate
- Observed

University Site 2

- Site Director
- Site Manager
- Project Scientist
- Students & Post-Docs

Industrial Members

- Primary
- Secondary
 - Affiliate
- Observed

University Site 3

- Site Director
- Site Manager
- Project Scientist
- Students & Post-Docs

Industrial Members

- Primary
- Secondary
- Affiliate
- Observed

IAB Executive Committee

Industrial Advisory
Board (IAB)

Leadership

- * Center Director (Associated with the Lead University Site)
 - Oversee and allocate resources; Provide annual outcomes and budget
- Site Directors (Associated with Partner University Sites)
 - Serve as a liaison between CAFS and the appropriate academic units of their member universities; Work with Site Project Scientists
- Industry Executive Committee (Comprised of selected members of the Industry Advisor Board with at least one nominee from each Site)
 - Advise, assist, and approve all administrative and policy matters affecting the functioning of CAFS; Promote and publicize CAFS accomplishments to key stakeholders
- Director's Board (Comprised of Center Director, Site Directors, and Industry Executive Committee)
 - Define the mission, objectives, and guiding principles of CAFS; Maintain and update
 CAFS Strategic Plan and Technology Roadmap

Research Focal Area

University of Idaho

Remote Sensing

- Enhanced Forest Inventories
- Forest health & risk assessment
- Species & disturbance mappingForest monitoring

Decision-support tools

- Refined growth & yield models
 - Site productivity
 - Maximum capacity models
- Cloud-based inventory systems

Advanced Forestry Systems

- Technology & data-driven
 - Site-specific
 - Outcome-based
 - High precision
 - Efficient
 - Cost-effective

Forest Genetics

- Improved tree breeding
 - Clonal production
 - Nursery production

Forest Management

- Early stand tending
- Optimal thinning regimes
 - Effective fertilization

University Sites

Forestry S S	
University	Expertise
Auburn University (AU)	Nursery technology, pine plantation management

North Carolina State University Forest soils, pine plantation management, productivity modeling (NCSU) Oregon State University (OSU) Douglas-fir plantation management, growth and yield modeling, genetics, remote

sensing Genetics, central hardwoods management, nursery technology

Purdue University (PU) University of Georgia Genetics, pine plantation management, wood quality, remote sensing, growth and yield modeling

University of Idaho Mixed-species management, natural regeneration, productivity modeling, remote sensing

University of Maine (UM; lead site) Mixed-species management, natural regeneration, growth and yield modeling,

remote sensing

Douglas-fir plantation management, wood quality, remote sensing, productivity

University of Washington modeling Virginia Tech Growth and yield modeling, productivity modeling, pine plantation management, genetics

Membership

Membership Type	Membership Fee	Vote	IP Property Access
Primary	\$25,000/yr	10 votes per membership	Yes
Secondary	\$10,000/yr	5 votes per membership	Upon Approval
Affiliate	\$5,000/yr	0	No
Observer	In-kind (<\$10,000k)	0	No

Members

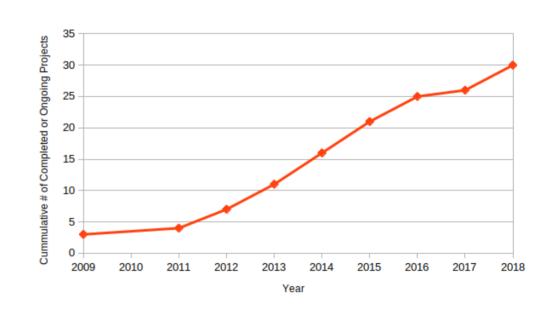
Membership	AU	NCSU	OSU	PU	UGA	UI	UM	UW	VT	Total
Primary	0	5	4	8	2	8	7	8	8	50
Secondary	16	5	14	0	19	2	8	12	12	88
Affiliate	4	3	0	2	0	0	2	0	3	14
Total	20	13	18	10	21	10	17	20	23	152

Diversified membership with strong variation across sites due to the regional and highly specific nature of the forest industry as well as land ownership partners

Governance

- Bylaws annual assessed and approved
- Standard agreements maintained and adhered
 - Inter-institution MOUs for university
 - Industry membership agreements for industrial members
- Research projects and bylaw amendments require majority approval
- Reporting and center business conducted at biannual meetings or as needed

Primary Metrics of Success


- Return on investment (% return on member dues)
- # of successfully completed research projects
- # of outputs from research projects
 - Publications, presentations, students trained
- # of collaborative grant proposals among universities
- \$ of additional funding for Center activities
- % of total center budget from member dues (<70%)
- # of alumni employed by industry members
- # of members (>30% Primary)

Accomplishments

- 30 completed or ongoing research projects including two multi-site fundamental research grants
- Strong and growing industry participation
- Several alumni working for industry members
- Diversified and productive staff
 - 9 Site Directors, 7 Administrative Staff,
 6 post-docs, 25 undergraduate
 students, and 40 graduate students

Potential Future Partners

- Non-profit trade organizations
 - National Council of Air & Stream Quality
 - American Forest Foundation
 - Sustainable Forestry Initiative
 - Climate Action Reserve
- Private Endowments & Foundations
 - U.S. Endowment for Forestry & Communities, Inc.
- Service Providers
 - ESRI Inc.
 - Sanborn
 - SilviaTerra
 - LimGeomatics

Sustainability

- Multi-faceted approach to future sustainability
 - Continue to recruit new members, particularly foundations
 - Seek private support
 - Federal research grants and contracts
 - Explore international memberships and partnerships
 - Direct site contributions

Phase III Timeline & Milestones

orestry or							
Milestone		Fiscal Year					
	18- 19	19- 20	20- 21	21- 22	22- 23		
Apply for & secure NSF Phase III funding							
Approve bylaws, strategic plan, & technology roadmap							
Initiate research projects identified on technology roadmap							
Revise and refine bylaws, strategic plan, & technology roadmap							
Secure additional partners including industry, academia, and non-profit sectors.							
Integrate center research and education activities that effectively train and benefit undergraduate and graduate students							
Survey, document, and prioritize industry member research needs							
Plan and host biannual meetings							
Annually report progress, outcomes, and finances							
7 tillidally report progress, outcomes, and infances							

Phase III Research Roadmap

estry of	0040	0000	0004	0000	0000	
	2019	2020	2021	2022	2023	Outcomes
Theme 1: Forest Modeling & Decision-Support Tools Primary IAB Partners: American Forest Management, Green Diamond	Provide IAB members with improved tools that allow better and more precise forest management and planning					
Project 1: Assessing and mapping regional variation in potential site productivity Lead Partners: NCSU, UI, UGA, UW, PU						Better understand how potential site productivity differs across the key forest regions in the US, the most influential factors, and produce high-resolution maps for IAB members to aid planning
Project 2: Assessing and mapping regional variation in site carrying capacity Lead Partners: UI, UM, OSU, VT, UGA, UW						Derive consistent estimates of maximum stand density index, evaluate most influential factors, and provide high-resolution maps to aid management
Project 3: Evaluation and refinement of regional GY models Partners: UM, VT, UGA, OSU, PU						Using the outcomes from Projects 1 and 2, evaluate regional growth and yield behavior and refine as possible
Theme 2: Effective Use of Remote Sensing Technologies Primary IAB Partners: JD Irving, Rayonier, and Weyerhaeuser						
Project 4: Mapping species composition and past disturbance using optical sensors Partners: UI, UM, UGA						Optimal sensors like Landsat and Sentinnel-2 offer the ability to annual map species composition and past disturbance, but have yet to be tests across the US
Project 5: Improving efficiency and accuracy of Enhanced Forest Inventories derived from LiDAR Partners: UW, OSU, UGA, UM						LiDAR is becoming increasingly used to produce Enhanced Forest Inventories, but uncertainties on ground data, necessary metrics, and modeling method remain.
Project 6: Using hyperspectral imaging to evaluate forest health risk Partners: VT, NCSU, OSU, UM						Forest health risks are extensive and difficult to detect. Hyperspectral imaging from terrestrial and/or airborne sensors can help detection and quantification

Phase III Research Roadmap

restry ?						, у ,
	2019	2020	2021	2022	2023	Outcomes
Theme 3: Improved Silvicultural Practices Primary IAB Partners: Hancock Forest Management, International For	rest Com	pany, and	d Molpus	s Timberl	lands	Forest managers have a variety of silvicultural regimes to select from, but it is often unclear on selecting the best practices for each site
Project 7: Quantifying long-term gains using advanced genetics Lead Partners: PU, UGA, OSU, NCSU						Tree genetics has seen significant advances in recent years due to better breeding practices and cloning, but a synthesis of the long-term potential effects of these practices across multiple species has yet to be presented
Project 8: Modeling forest response to early stand treatments Lead Partners: UW, UI, NCSU, VT						Vegetation management is critical to successful rotations, but its prediction is complicated by a variety of factors such as the type and extent of competing vegetation. Leveraging long-term datasets, the outcomes of contrasting treatments would be assessed and modeled.
Project 9: Identifying type and level of response to forest fertilization Lead Partners: UW, UI, NCSU, PU						Forest fertilization is a widely used silvicultural practice that is difficult to predict. Using long-term and newly available data, methods to improve predictions of forest responsiveness would be evaluated.
Project-wide activities informed by Research Plan	 Incorporation of advanced and emerging technologies Delivery of multi-platform, decision-support tools Harmonization, and synthesis of available regional datasets to generalize trends Multi-disciplinary, knowledge to action, and stakeholder-drive framework 					pport tools ble regional datasets to generalize trends

IAB meetings, evaluation, undergraduate education, publications, attendance at national meetings, securing of additional research support

Logic Model

Things as They Stand Now (Prior to Phase III)

- Over decade of history
- Existing partnerships & recognized national
- reputationPast/ongoing multi-site
- research projects
 Supportive and engaged
- membership
 - Continuity across US
 - Available & diverse regional datasets
 - Changes in Key Site
 Directors and Lead Site
 - Support from NSF

Strategies for Moving Things Forward

- More integrated & nationally relevant research projects
- Build upon & expand partnerships
 - Improved communications &

reporting

- Additional IAB meeting
- Stronger leadership & engagement of
- Better leverage of NSF contributions (e.g. REU)

Executive Committee

Achieved/Desired Outcomes

- Strong, engaged, & diversified members
- across the entire US
 Long-term organizational
 sustainability
 - Influential research outcomes that guide forest management
 - Vision that continues research partnerships
 - A more robust forest
 - industry that leverages developed technology
 - Increased funding

Broader Impacts

- Forests provide numerous ecosystem services, particularly sustainably managed forests
- Train next generation of forest managers and scientists
- Secure and broaden the national forest-based economy
- >2.7 million jobs dependent on forests with total payroll over \$110 billion¹
- ~\$100 billion economic impact or >5% of manufacturing GDP¹