
FVS …
and what comes next.

David Diaz
Center for Advanced Forestry Systems

June 12, 2025

Vibrant Planet
The first common operating system
for fire and forest resilience planning

Vibrant Planet
Adaptive community and wildland
management—a “living” plan

● Empower decision makers to move with
precision and speed

● Monitor current conditions/hazards
with best data and science

● Enable statewide and regional
standardization with localization

● Intuitively communicate the cost-
effectiveness of risk reduction and/or
restoration outcomes alongside detailed
tradeoff and efficiency analytics

● Enable collaborative uses from day 1.

Vibrant Planet
Currently deployed across 70M acres and growing

● Architected to serve multiple decision scales
and designed for a wide range of audiences.

● Built upon modern ML workflows to leverage
remote sensing and trusted forest + fire
modeling and prioritization systems.

● Rapid generation of CWPPs and QWRAs.

5

Today’s Focus
Challenges & Solutions for Next-Generation Growth & Yield

• Motivating Use Case

• Reproducible & Scalable Computing

• Benchmarking Model Performance

• Improving Default FVS Performance

• Plugging in New Models

• Governance of Community-Supported Software

6

Motivation

As a forest/fire analyst:

➔ I need a scalable, reliable, and cost-
effective pipeline to execute millions
of simulations of a variety of
management and disturbance
scenarios …

➔ so that I can deliver impact metrics
that enable managers to evaluate
the effectiveness and tradeoffs of
alternative management scenarios.

As a forest/community decision-maker:

➔ I need to see how the assets and
resources we care about respond to
a spectrum of treatment and
disturbance events …

➔ so that I can identify the most cost-
effective ways to achieve our risk
mitigation and/or restoration goals
while limiting undesirable tradeoffs.

7

Reproducibility Challenges
• Fortran77

• FVS is more than a dozen divergent implementations of the same core functionality
(growth, mortality, regen, disturbance events) in regional variants.

• Production target narrowly focused on desktop GUI for Windows OS. Tries to solve
most G&Y life cycle via GUI, handled internally instead of interfacing with purpose-
built external libraries that are more widely used and better maintained.

• Limited adoption of software engineering best practices (CI, unit and integration
testing) and development patterns (branching and pull requests). Breaking changes
and backward incompatibility occur often with changes to FVS codebase.

• While FVS is open-source on GitHub, community contributions are limited to one
person, and even FMSC staff face barriers to contributing code.

• FMSC capacity to fix bugs and issues is severely limited and we should probably
expect it to get worse rather than better for the next several years.

8

Reproducibility Challenges

9

Reproducibility Solutions

• Build & Scale: Containerized FVS
environment built from source that
can be deployed and autoscaled
with cloud computing.

• Robust: Automated unit &
integration tests to catch breaking
changes before merging updates.

• MicroFVS Web API: Clearly defined
inputs, outputs, and reusable
building blocks. Sensible defaults
provided if not given by user.

/template

/treatments/06-01

/keyfile

/run

{
“name”: “FVSpn_12345_GROW_UNDISTURBED”,
“variant”: …, “keyfile”: …,
“return_code”: 0, “command”: …, “stdout”: …, “stderr”: …,

“fvs_data”: {“fvs_cases”: { … }, “fvs_summary”: {...}, …},
…

}

Adapted from “What is a REST API” by mannhowie.com

MicroFVS REST API

10

Benchmarking Challenges

• Core workflow and results of FVS
validation protocols are either not being
followed or not being documented.

• Numerous studies showing systematic bias
in multiple regions with FVS defaults
(overestimation of growth and/or
underestimation of mortality)

• Widespread application of (Climate-)FVS
for policy, carbon, and strategic analyses
by FVS novices. Journal peer review isn’t
working.

Diaz et al. (2018). “Tradeoffs…”

Cawrse et al. (2010)

11

Benchmarking Solutions
• FIA data stream should serve as the

foundation for evaluating how well
incremental and long-run simulations
perform against field observations
across US.

• Automate and extend FVS Validation
Protocols so performance of current
models and proposed changes can be
quantified and documented.

• A shared proving ground is necessary
(but not sufficient) to enable
community development and limit
redundancy.

12

FVS Default Challenges
• Growth and mortality parameters have not been refit

in most regions for decades, despite widespread
empirical evidence that forest growth and mortality
rates are changing. It is not clear how well predictions
matched observations at the time they were fit either.

• FVS growth and mortality coefficients can currently
only be changed in Fortran77 source code and used
after re-compiling.

• FVS does not consistently break or offer clear error
messages with invalid input data.

• FVS docs give unintentionally misleading illusion of
stochastic capability to reflect model uncertainty.

Dixon et al. (2025). “Essential FVS…”

13

FVS Default Solutions
v0: Bend FVS with Keywords

Employ SDIMAX, BAIMULT, MORTMULT keywords to bend FVS into sensible range.

14

FVS Default Solutions
v1: Focus on extending FVS API to avoid major refactor

Make targeted extensions of existing FVS API in Fortran to allow getting and
setting of growth and mortality coefficients at runtime from rFVS or fvs2py.

FVS API can allow Fortran routines to be ignored or have params modified directly. Custom models can
estimate growth, mortality, regen, injecting predictions as changes to FVS trees in memory at runtime.

15

FVS Default Solutions
v2: Replicate FVS step-functions outside of Fortran

Code growth and mortality routines in modern statistical libraries and assimilate
new data. Integrate new model forms and coefficients either through FVS refactor
or replacement at runtime using FVS API.

Diaz & Ettl (2024) in
https://research.fs.usda.gov/treesearch/68919

https://doi.org/10.1038/s43017-023-00450-9

https://research.fs.usda.gov/treesearch/68919
https://doi.org/10.1038/s43017-023-00450-9
https://doi.org/10.1038/s43017-023-00450-9
https://doi.org/10.1038/s43017-023-00450-9
https://doi.org/10.1038/s43017-023-00450-9
https://doi.org/10.1038/s43017-023-00450-9
https://doi.org/10.1038/s43017-023-00450-9
https://doi.org/10.1038/s43017-023-00450-9

16

Plugging in New Models
Beyond FVS

• Stable API and automated benchmarking in
an open-source repo allow community
development and iteration while maintaining
data contract with users.

• G&Y engine can be abstracted to a black box
that maps tree + stand initialization data and
simulation configs to schema-compliant
outputs.

• New models are free to bring new data,
features, algorithms to bear so long as they
can be derived from existing FVS inputs (e.g.,
lat/lon) or be submitted to API as optional
inputs by users.

https://www.embedded.com/understanding-convolutional-neural-networks/

https://blog.ml.cmu.edu

https://www.embedded.com/understanding-convolutional-neural-networks/
https://www.embedded.com/understanding-convolutional-neural-networks/
https://www.embedded.com/understanding-convolutional-neural-networks/
https://www.embedded.com/understanding-convolutional-neural-networks/
https://www.embedded.com/understanding-convolutional-neural-networks/
https://www.embedded.com/understanding-convolutional-neural-networks/
https://www.embedded.com/understanding-convolutional-neural-networks/
https://blog.ml.cmu.edu/2019/05/17/explaining-a-black-box-using-deep-variational-information-bottleneck-approach/

Governance

➔US GOV is so far unable or unwilling to adopt modern software development patterns or
enable community contributions. Any modifications to FVS source code need to be built on
forks rather than expecting PRs and issues to be addressed by FVS maintainers.

➔We will all benefit (including US GOV) by enabling community contribution to a shared G&Y
framework, but that needs to involve clear standards and expectations and honoring them
in practice. This will require a steering group of core contributors and maintainers who
would ideally lead definiition of a roadmap for priority development tasks that will benefit
the community.

➔The size, scope, and ambition of this group and effort can be scaled according to capacity
and funding while prioritizing basic service remains available or at least reproducible.

FVS and what comes next.

17

Thank you.

18

Find me

ddiaz@vibrantplanet.net

	Slide 1: FVS … and what comes next.
	Slide 2
	Slide 3
	Slide 4: Vibrant Planet Currently deployed across 70M acres and growing
	Slide 5: Today’s Focus Challenges & Solutions for Next-Generation Growth & Yield
	Slide 6: Motivation
	Slide 7: Reproducibility Challenges
	Slide 8: Reproducibility Challenges
	Slide 9: Reproducibility Solutions
	Slide 10: Benchmarking Challenges
	Slide 11: Benchmarking Solutions
	Slide 12: FVS Default Challenges
	Slide 13: FVS Default Solutions v0: Bend FVS with Keywords
	Slide 14: FVS Default Solutions v1: Focus on extending FVS API to avoid major refactor
	Slide 15: FVS Default Solutions v2: Replicate FVS step-functions outside of Fortran
	Slide 16: Plugging in New Models Beyond FVS
	Slide 17: Governance
	Slide 18: Thank you.

