

Plantation Management Research Cooperative

Warnell School of Forestry & Natural Resources

UNIVERSITY OF GEORGIA

A Combined Silvicultural and Genetic Approach to Understanding Forest Growth and Yield Responses in the Southeastern U.S.

Include Project Code (i.e. CAFS.22.36)

Bronson Bullock¹, Tulio Queiroz¹, Stephen Kinane¹, Sheng-I Yang¹ and Dehai Zhao¹

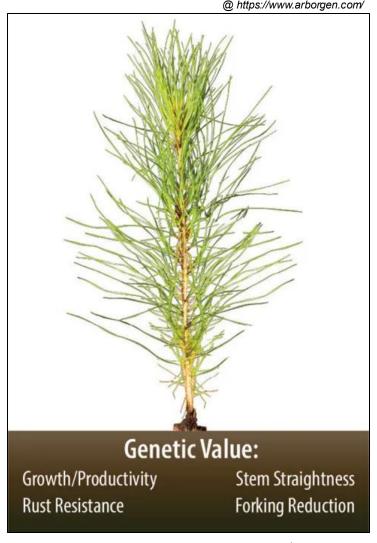
¹University of Georgia Plantation Management Research Cooperative

Presented by Lainey Paulus (M.S. Student)

Justification

@ https://www.arborgen.com/

Genetic Improvement and Productivity


 Since the 1950s, breeding efforts have more than doubled plantation productivity, reduced rotation lengths, and increased volume 63%+ for third-cycle selections over the nonimproved check lot (McKeand et al. 2021).

Economic and Silvicultural Benefits

 Improved genetics and silviculture have enhanced timber volume, stem form, and disease resistance, boosting tree and stand value.

Selection Methods and Future Gains

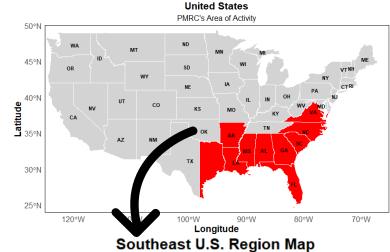
 Landowners choose from open-pollinated, full-sibling, and clonal varieties, with tools like the NC State Tree Improvement Program's Performance Rating System (PRS) guiding optimal selections.

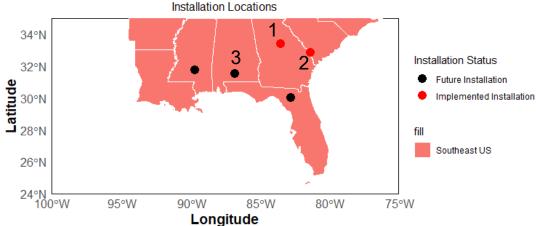
General Objectives

- 1.Establish a large-scale research experiment across the southeastern U.S. to assess the effects of improved genetics and intensive silviculture on loblolly pine growth and long-term yields
- 2. Use early stand attributes and site environmental data to project stand development at rotation age

Specific Objective

 Evaluate survival rates and juvenile height growth to assess the effects of improved genetics and intensive silviculture on loblolly pine development.




Materials and Methods

Silviculture and Genetics Trial Installation

Materials and Methods

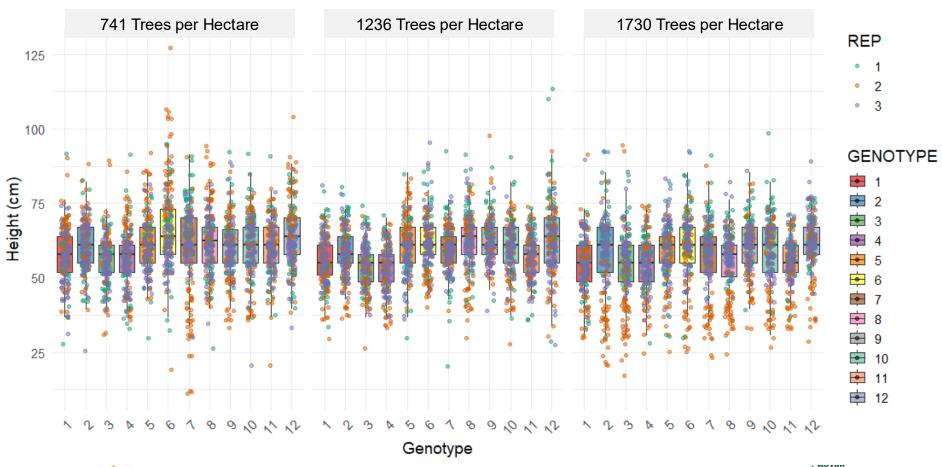
PRS Scores

Dr. Trevor Walker

Co-Director, Cooperative Tree Improvement Program

Assistant Professor, Forest Genetics

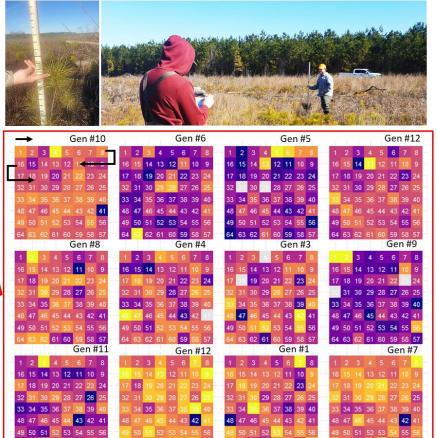
Voor cour	Greenhouse code	Droductivity	Hoidht	Rust	Rust Grade	Ctrt	Strt Grade	Fork	Fork Grada	PRS Version
_		80				37				_
	GxS_1						A+	43 39		2023 Piedmont
	GxS_2	63	19 17		A	51				2023 Piedmont
	GxS_3	49						31		2023 Piedmont
	GxS_4	27	6		A	37		35		2023 Piedmont
	GxS_5	84	21			33		41		2023 Piedmont
	GxS_6	108			A		Α+	41		2023 Piedmont
	GxS_7	67	15			42		34		2023 Piedmont
	GxS_8	60	15		A+	48		38		2023 Piedmont
	GxS_9	85			A+	33		34		2023 Piedmont
	GxS_10	45	10		Α	50		35		2023 Piedmont
2023	GxS_11	71	22	14	Α	58	A+	37	В	2023 Piedmont
2023	GxS_12	69	18	13	Α	30	С	36		2023 Piedmont
2024	901	42	10		Α	40		51		2023 Coastal
2024	902	78	27	0	A+	60	A+	46	С	2023 Coastal
2024	903	54	17	7	Α	42	В	40	В	2023 Coastal
2024	904	70	24	22	С	43	Α	53	E	2023 Coastal
2024	905	83	25	5	Α	47	Α	40	В	2023 Coastal
2024	906	34	14	0	A+	44	Α	43	С	2023 Coastal
2024	907	41	13	7	A	40	В	39	В	2023 Coastal
2024	908	57	19	15	В	44	Α	41	В	2023 Coastal
2024	909	63	19	10	A	42	В	41	В	2023 Coastal
2024	910	25	5	8	Α	50	Α	36	Α	2023 Coastal
2025	PMRC_01	57	17	9	Α	49	Α	35	Α	2023 Coastal
2025	PMRC_02	59	21	0	A+	38	В	34	Α	2023 Coastal
2025	PMRC_03	52	20	3	Α	42	В	32	Α	2023 Coastal
2025	PMRC 04	52	16	26	С	35	С	45	С	2023 Coastal
2025	PMRC_05	64	18	0	A+	55	A+	35		2023 Coastal
2025	PMRC 06	72	22	27	С	44	А	51	D	2023 Coastal
	PMRC 07	53	20	13	Α	38	В	41	С	2023 Coastal
	PMRC 08	56	15	22	С	39	В	39	В	2023 Coastal
	PMRC 09	48	15			41		39		2023 Coastal
	PMRC_10	83			A	47		40		2023 Coastal
	PMRC 11	97			A	47		63		2023 Coastal



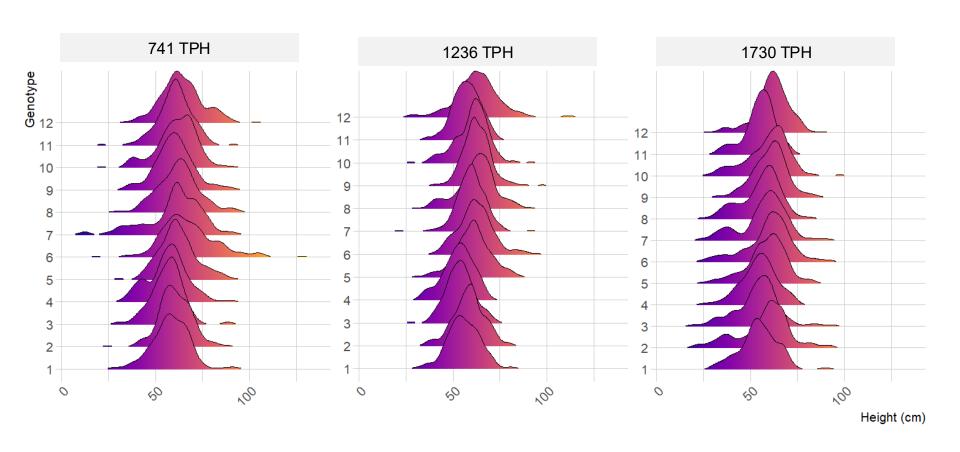
Major Findings

6,912 seedlings

Height Distribution by Genotype and Density



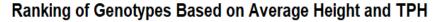
Major Findings

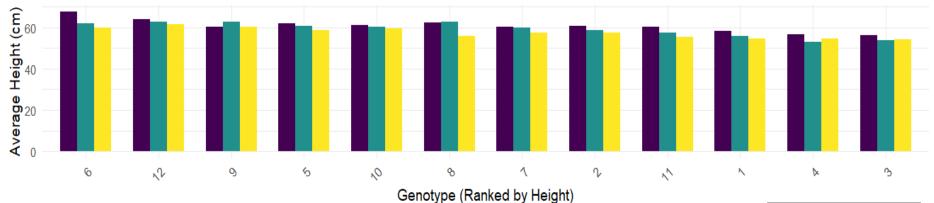

Height (cm)

40 50 60 70

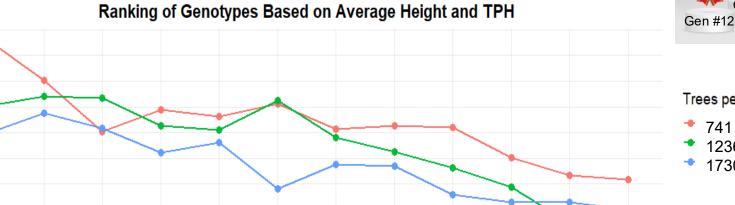
Major Findings

Height Distribution by Genotype and TPH

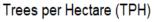




68


Average Height (cm)

Deliverables



Trees per Hectare (TPH) 741

Genotype (Ranked by Height)

Gen#9

- 741 TPH
- 1236 TPH
- 1730 TPH

Company Benefits

- 1. Improved Productivity and Profitability (Short & Long Term): Information on how companies can achieve higher survival rates, faster growth, and increased yields—leading to greater timber volume and returns on investment.
- 2. Optimized Management Decisions (Short Term): Early predictive models enable better planning for site preparation, thinning, harvesting, reducing costs and improving operational efficiency.
- 3. Tailored Genetic Deployment (Long Term): Data from the experiment supports selecting the best genetic material based on TIP PRS for specific environments, maximizing performance across diverse sites.
- 4. Reduced Risk and Uncertainty (Short & Long Term): Accurate growth and yield predictions help companies better anticipate future stand conditions and market readiness, reducing financial and operational risks.
- 5. Strategic Long-Term Planning (Long Term): Enhanced models support long-term forest planning, carbon accounting, and sustainability goals—critical for certification, ESG reporting, and climate resilience.

Recommendations

Develop growth and yield models using early growth data to support adaptive forest management across a range of TIP PRS scores.

This approach enhances stand productivity, improves resource use efficiency, and reduces economic and ecological risks over the rotation.

Integrate Genetics and Silviculture in Operational Trials.

Develop or adopt predictive growth models that incorporate both genetic and environmental variables to support strategic decisions on rotation length, thinning, and yield forecasting.

Summary

- Establishment of region-wide replicated silviculture x genetics research trial is important and on-going in the SE U.S.
 - Costly and time-consuming research cooperatives are essential!
 - Growing a range of genotypes across different densities
- Genotype selection matters
 - PRS as a mechanism to balance growth with other traits
- Density matters
 - Trends will likely diverge further after crown closure when intense intertree competition begins

Acknowledgements

PMRC Member Companies
PMRC Field Crew
NCSU Tree Improvement Program (TIP)

PMRC 50 years

A half-century Celebration of Research! 1975-2025

THANK YOU!

