Continuing Project

Using Small Area Estimation and 3D-NAIP/Sentinel-derived Variables for Multivariate Prediction of Stand Attributes (CAFS.24.107)

PI: Sukhyun Joo, Oregon State University

- **Co-PI:** Temesgen Hailemariam, Oregon State University
- Co-PI: Bryce Frank, USDA FIA

Collaborators: Dale Hogg (Green Diamond Resources); Nathaniel Naumann (PotlatchDeltic); Cristian Montes (Rayonier); Phil Radtke (Virginia Tech); Rachel Cook (NC State University); Ethan Hughes (Washington DNR); Francisco Mauro (University of Valladolid)

Presenter: Sukhyun Joo

Justification

- Why Small Area Estimation (SAE)?
 - Traditional forest inventory provides reliable estimates at large scales
 - Management decisions require stand-level estimates
 - Direct estimates at stand level have high sampling variance
- SAE borrows strength from:
 - Similar stands (spatial borrowing)
 - Auxiliary data (remote sensing)

Justification

- Previous research has focused on using area- or unitlevel predictors within a univariate framework, analyzing each variable independently without accounting for their correlations.
- Many forest inventory variables exhibit strong correlations, such as basal area, stand volume, and trees per acre.
- In such cases, employing multivariate responses can enhance the accuracy of the estimates.

Hypotheses or Objectives

- Primary Objective: Develop accurate predictions for key forest attributes
 - Trees per acre (TPA)
 - Basal area (BA, ft²/ac)
 - Merchantable cubic foot volume (CFV, ft³/ac)
- Methodological Objectives:
 - Compare univariate vs. multivariate SAE approaches
 - Evaluate different random effects structures
 - Assess improvement over direct estimation

 Washington area focusing on Grays Harbor and Mason Counties

					Catalog Ska JUAN MI Verton Skagit
Plots/Stand	1-5	6-10	11-20	>20	CLALLAM
n	1	7	57	154	JEFFERSON KITSAP Seatto
Percentage (%)	0.5	3.2	26	70.3	GRAYS HARBOR Aberdeen THURSTON
					PACIFIC LEWIS YAKIMA MAHKIAKUM COWLITZ SKAMANIA Partice Marce Langelew

COLUMBIA

Response variables

Variable	Mean	Min	Max
TPA (trees/ac)	297.6	19.4	1624.9
BA (ft²/ac)	143.4	3.0	531.1
CFV (ft ³ /ac)	3765.7	23.8	19987.6

Auxiliary Variables

- Data sources
 - 3D-NAIP imagery (4-band, summer acquisitions)
 - Sentinel-2 (multispectral, seasonal)
- Variable categories
 - Height metrics (ht_mean, ht_p99)
 - Spectral indices (NDVI, band differences)

Unit-level Mixed Model:

$$y_{ij} = \boldsymbol{X}_{ij}^{\mathsf{T}} \boldsymbol{\beta} + v_i + \varepsilon_{ij}$$

$$\begin{array}{l} y_{ij} \\ \boldsymbol{X_{ij}} \\ \boldsymbol{\beta} \\ v_i \\ \varepsilon_{ij} \end{array}$$

- = plot *j* in stand *i*
- = vector of auxiliary variables for y_{ij}
 - = vector of fixed-effects coefficients
- = stand-level random effect; $v_i \sim N(0, \sigma_v^2)$
- = residual error; $\varepsilon_{ij} \sim N(0, \sigma_{\varepsilon}^2)$

 Empirical Best Linear Unbiased Predictor (EBLUP) for stand i

$$\hat{y}_i = \overline{X}_i^{\mathsf{T}} \widehat{\beta} + \hat{v}_i$$

• Here \overline{X}_i is the mean of the predictor vectors for stand i, $\widehat{\beta}$ is the estimated fixed-effect vector, and \widehat{v}_i is the BLUP of the stand random effect.

Univariate Model Selection

- Stage 1: Find optimal complexity
 - Exhaustive search (1-8 predictors)
 - Select by adjusted R² elbow point
- Stage 2: Apply constraints & fit mixed models
 - VIF threshold = 5
 - Test multiple random effect structures

Results

- Univariate modeling method
 - Battese-Harter-Fuller (BHF) model
 - Unit-level model
 - Area-specific random effects
 - Best models by AIC
 - CFV performed best with variance weights

Response	EBLUP RMSE	EBLUP RMSE
TPA (trees/ac)	13.53	4.48
BA (ft²/ac)	6.49	4.46
CFV (ft³/ac)	278.5	7.24

Results

- TPA
 - ht_l_cv: Height L-moment Coefficient of Variation
 - NDMI: Normalized Difference Moisture Index
 - TCI_G: Terrestrial Chlorophyll Index Green band
 - ht_p10: 10th Percentile Height
- BA
 - ht_quadratic_mean
 - ht_maximum
- CFV (with variance weighting):
 - ht_l_cv
 - ht_p99
 - NDMI

- Multivariate model
 - Joint Modeling of TPA, BA, and CFV
 - Borrows strength across responses
 - Maintains correlation structure
 - Single model for all attributes

Long format mixed model

$$y_{ijk} = \mu_k + \boldsymbol{X}_{ij}^{\mathsf{T}} \boldsymbol{\beta}_k + v_{ik} + \varepsilon_{ijk}$$

k indexes the trait: TPA, BA, and CFV.

 μ_k is the trait-specific intercept.

 X_{ij} is the auxiliary variable vector for observation j in stand i.

 $\boldsymbol{\beta}_k$ is the vector of trait-specific fixed effect coefficients.

 v_{ik} is the random effect for stand *i* and trait *k*; assumed $v_{ik} \sim N(0, \sigma_{v,k}^2)$.

 ε_{ijk} is the residual error for observation *j* in stand *i* and trait *k*; $\varepsilon_{ijk} \sim N(0, \sigma_{e,k}^2)$.

- Variables
 - Combined predictors from TPA, BA, and CFV univariate models.
 - Applied VIF screening to avoid multicollinearity.
- Preliminary modeling approach
 - Multivariate model with stand random effects
 - Stand-level correlations modeled through random effects
 - Plot-level residuals assumed independent

Major Findings

Performance comparison

Method	TPA RMSE	BA RMSE	CFV RMSE	TPA CV (%)	BA CV(%)	CFV CV (%)
Direct	25.3	11.7	369.5	8.4	8.1	9.6
Univariate	13.5	6.5	278.5	4.5	4.5	7.2
Multivariate	59.9	29.2	60.0	19.8	20.1	1.6

Progress 2024-25

FIA unfuzzed data status

- Material Transfer Agreement (MTA) completed last week
- All signatures obtained
- Data access now approved
 - OR, WA, GA, AL

Company Benefits

StandID	# Plots	TPA Direct	TPA EBLUP	TPA CV Direct (%)	TPA CV EBLUP (%)
19N07W08008	5	252.0	254.1	22.4	7.8
13N04W21002	6	159.4	161.1	20.4	7.1
13N05W24004	11	378.5	389.6	15.1	5.3
13N02E09005	21	329.5	333.8	10.9	3.8
20N05W04019	52	439.6	441.0	6.9	2.4

Deliverables

- SAE provides substantial improvement over direct estimation 25-40% reduction in RMSE.
- Greatest gains for small samples.

Future Plans

- Develop models with FIA unfuzzed data
 - Material Transfer Agreement (MTA) now complete.
- Validate models on independent industry data
- Refine multivariate predictor selection
 - Test alternative variable selection strategies
- Try to improve multivariate model structure
 - Random effects

Summary

- SAE provides substantial improvement over direct estimation 25-40% reduction in RMSE.
- 3D-NAIP height metrics and Sentinel-2 spectral indices proved successful auxiliary predictors in the SAE model.
- FIA unfuzzed data are now accessible.
- Refine predictor selection and test alternative multivariate structures.

