

# **Continuing Project**

The Interplay of Sampling Design and Small Area Estimation

Project Code (CAFS.23.104)

Temesgen Hailemariam and Suchana Aryal, Oregon State University

## **Presenter:** Suchana Aryal





## Justification

#### STAND:

**Operative Decision Unit** 

#### IMPLICATION

If our per-stand numbers are off, every downstream operational decision inherits that error.





## Justification

#### **The Scaling Problem:**

Hundreds to thousands of stands per ownership



**Resource Constraints** 

Field budgets  $\uparrow$  linearly with # plots



Insufficient Sample Sizes

Budget pressure  $\Rightarrow$  few or no plots per stand  $\downarrow$   $Var\left(\hat{Y}_{i}\right) = \frac{\hat{\sigma}_{i}^{2}}{n_{i}}$  (n<sub>i</sub> small)  $\Rightarrow$   $\hat{Y}_{i}$  imprecise  $n_{i} \approx 0 \Rightarrow \hat{Y}_{i}$  unknown





## Justification

#### **Fay–Herriot small-area estimation (SAE):**

#### Data Integration and Model Development

FH combines ground estimates (even from VRPs) with LiDAR/Sentinelderived predictors to enhance estimation capabilities.

#### Estimation

Generate empirical best linear unbiased predictions (EBLUP) for both sampled and unsampled stands.

#### Benefits

Shrinks noisy direct estimates, reducing mean-squared error (MSE). Robust to imprecise plot locations.



~3



## **Objectives**

Our study evaluates the efficiency of alternative sampling designs and sampling intensities for stand-level SAE of merchantable volume

Does sampling in proportion to known attributes (e.g. volume or area) yield measurable gains in estimator efficiency?

Does stratifying yield more efficient stand-level small area estimates than unstratified designs across sampling intensities?

How does efficiency change as the overall sampling intensity  $\boldsymbol{\varphi}$  increases?





#### Fay-Herriot Models for Stand-Level Estimation

**Sampling Model:**  $\hat{\delta}_d^{DIR} = \delta_d + e_d$ **Linking Model:**  $\delta_d = x_d^T \beta + v_d$ where for all domain d = 1, ....., D:

- Sampling errors  $\{e_d\}$  are independent with  $e_d \sim \mathcal{N}(0, \psi_d)$
- Random effects  $\{v_d\}$  are independent with  $v_d \sim \mathcal{N}(0, \hat{\sigma}_v^2)$
- The errors and random effects are mutually independent



This specification leads to the basic Fay-Herriot representation:  $\hat{\delta}_d^{DIR} = x_d^T \beta + v_d + e_d, d = 1, ..., D$ 





#### Fay-Herriot Models for Stand-Level Estimation

When the hyperparameters  $\beta$  and  $\sigma_{\nu}^2$  are known, inferences on  $\delta_d$  are based on the following posterior distribution of  $\delta_d$ :

$$\delta_{d}|\hat{\delta}_{d}^{DIR},\beta,\sigma_{v}^{2}\sim \text{iid} \mathcal{N}(\hat{\delta}_{d}^{FH},g_{1d}(\sigma_{v}^{2})); \ g_{1d}(\sigma_{v}^{2}) = \gamma_{d}\psi_{d}$$

Once the FH model is fitted, stand-level estimates are obtained using EBLUP as:

$$\hat{\delta}_d^{FH} = \gamma_d \hat{\delta}_d^{DIR} + (1 - \gamma_d) x_d \beta$$

where  $\gamma_d$  is a shrinkage factor defined as:

$$\gamma_d = \frac{\sigma_v^2}{\sigma_v^2 + \psi_d}$$





#### Fay-Herriot Models for Stand-Level Estimation

If direct estimates have small errors compared to the unexplained variance of the fitted models  $(\sigma_v^2 > \psi_d), \gamma_d \approx 1$ , i.e.  $\hat{\delta}_d^{FH}$  rely more on the ground estimate.

If direct estimates have high errors  $(\sigma_v^2 < \psi_d), \gamma_d \approx 0, \hat{\delta}_d^{FH}$  puts more weight on the synthetic predictor, i.e.  $\hat{\delta}_d^{FH} \cong x_d \beta$ .

For unsampled stands or stands with only one variable radius plot, estimates are purely model based:

$$\widehat{\delta}_d^{FH} \cong x_d \beta$$





A) Frequency of cruise plots per stand B) Cumulative percentage of stands with  $\leq$  k plots 21 100% 2020 20 90% Cumulative percentage of stands 80% 15 70% 14 Count of stands 60% 11 10 50% 10 40% 6 6 30% 5 20% 10% 0 0% 5 15 20 25 30 35 40 45 25 45 10 5 10 15 20 30 35 40 Plots in stand Plots in stand (k)

Distribution of cruise-plot counts across 193 stands (total plots = 3825)

#### Distribution and Cumulative Frequency of Cruise Plot Counts for Stands Used in Direct Survey Estimates







Auto intersection: ht\_max, ht\_bar, ht\_sd, tzq30, pzgt70, NDI45\_sd, NDI711p001, GRN\_mode Best Subsets (BIC k= 8): ht\_bar, ht\_sd, tzq30, pzgt70, NDI45\_sd, NDI72p001, NMDI\_sd, GRN\_mode





#### Unstratified Two-Stage Sampling

| Scenario | <b>Stage 1: Stand selection</b> | Stage 2: Plot allocation |
|----------|---------------------------------|--------------------------|
| A1       | SRS of stands                   | SRS of plots             |
| A2       | SRS of stands                   | PPS by stand area        |
| A3       | SRS of stands                   | PPV by stand volume      |
| A4       | PPS of stands (by area)         | SRS of plots             |
| A5       | PPV of stands (by volume)       | SRS of plots             |

#### Stratified Two-Stage Sampling

| Scenario | Stage 1: Stand selection   | Stage 2: Plot allocation |
|----------|----------------------------|--------------------------|
| B1       | Stratified SRS of stands   | SRS of plots             |
| B2       | Stratified SRS of stands   | PPS (by area)            |
| B3       | Stratified SRS of stands   | PPV (by volume)          |
| B4       | Stratified PPS (by area)   | SRS of plots             |
| B5       | Stratified PPV (by volume) | SRS of plots             |





### **Progress 2024-25**









Estimator - Direct - EBLUP





#### EBLUP vs. Direct Estimation Performance

## **Major Findings**

Positive values = EBLUP improves precision | Negative = Direct better



Sampling Intensity ( $\phi$ )

Direct Better
EBLUP Better





## **Major Findings**

#### 0.15 0.05 0.1 0.2 20 Relative Gain in Precision (percentage points) • **....**... 0.25 0.3 0.35 0.4 0

Blue: EBLUP more precise | Red: Direct more precise | \*: Optimal design

Relative Precision Gain of EBLUP vs Direct Estimation

A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 B4 B5 A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 Sampling Design





### Deliverables



Protocols for linking remote-sensing and ground data to improve small-area timber inventory estimates



Quantify uncertainty of SAE predictions under different sampling intensities



A PhD dissertation on the interplay



Summary report for member companies



Publications in peer-reviewed literature and presentations at several regional professional meetings





## **Company Benefits**

#### Better understanding of linking data-sources

Combine spatially extensive + LiDAR/Sentinel metrics with targeted ground plots to improve the estimation of selected stand variables

#### **Cost Savings**

Borrowing strength + Optimized sampling reduces the number of expensive ground plots needed while maintaining accuracy

#### **Efficiency Gain**

The project demonstrates ways for incorporating SAE models into operational forest inventory in plantations

Operationalizing SAE Models: From Theoretical Foundations to Real-World Implementation





### Summary

The overarching goal of this project is to advance SAE methods for forest inventory, with progress to date including:

- Compiled a broad candidate set of LiDAR and Sentinel covariates, evaluated different variable selection methods, and identified a final subset of covariates that improve prediction at the stand level.
- Determined the most efficient Fay-Harriot model specification for predicting total merchantable volume.
- Evaluated the performance of various sampling designs across multiple sampling intensities to determine whether an optimal design existed.



