Progress Report

Enhancing Resistance to Fungal Pathogens in Commercial Tree Seedlings

CAFS 23.XX

Dr. George Newcombe, University of Idaho Abigail Ferson-Mitchell, University of Idaho

Abigail Ferson-Mitchell (UI)

CAFS 2023 Fall IAB Meeting

Project Overview

- Endophytes are nonpathogenic microsymbionts within plant tissues
- *Bacillus* is known to produce strong antimicrobial compounds and is commonly isolated from foliage and seeds

Objective:

- To enhance survival of commercial 'resistant' varieties of seedlings against virulent strains of devastating pathogens:
 - 1. Acacia koa against Fusarium oxysporum f. sp. koae.
 - 2. Pinus monticola against Cronartium ribicola.
 - 3. Chamaecyparis lawsoniana against Phytophthora lateralis.

Current Progress

		2023					2024			
		Summer	Fall		Wint	er	Spring	Summer	Fall	Winter
Seed treatments and sowing	Коа	\times								
	Western white pine	\checkmark								
	Port-Orford-cedar	\checkmark								
Pathogen inoculations	Коа	\times								
	Western white pine		$\mathbf{\sim}$							
	Port-Orford-cedar									
Data collection	Коа		\geq	<						
	Western white pine									
	Port-Orford-cedar									
	Data analysis; manuscript drafting									
	CAFS reporting									

Koa

- Inoculate koa seedlings with bacterial endophytes
- Sow germinated seedlings into FOXY inoculated soil
- Begin collecting daily mortality data

Western white pine

- Begin disease severity scoring in December 2023
 - Testing three factors:
 - Bacterial treatment vs. water control
 - Susceptible seed vs. resistant seed sources
 - High spore density (4000 spores/cm²) vs. low spore density (2000 spores/cm²)

Port-Orford-cedar

- Inoculate with pathogen in January 2023
 - Testing three factors:
 - Bacterial treatment vs. water control
 - · Susceptible seed vs. resistant seed sources
 - Homogenization risk with inoculation method

