Final Report

INTERN: Improving Forest Sample Estimation Through UAS Canopy Structure Stratification

Project Code: CAFS.21.90

Mark Kimsey, University of Idaho Logan Wimme, University of Idaho

Presenter: Logan Wimme, University of Idaho

Project Overview

- Collaboration with WA DNR, Landvest, and University of Idaho
 - Peter Gould, WA DNR
 - o Weikko Jaross, Landvest
- o Mentorship
 - Learn from experienced professionals
 - Participate in weekly team meetings
 - Feedback on my performance
- **Objective:** Evaluate the use of UAS to improve traditional stand inventories through photogrammetric stratification of imagery derived canopy height models
- **Goal:** Increase accuracy and reduce cost of traditional inventories

Project Overview

• Methods:

- Six stands selected
 - 3 Westside, 3 Eastside Washington
- Aerial imagery collected with DJI Mavic 2 Pro drone
- Agisoft Metashape software used to generate 3D point cloud from imagery
- 3D point cloud used to create canopy height model (CHM)
- Rasterized height pixels from CHM clustered to identify within-stand strata
- Sample sizes created for each strata according to within strata variability and strata size
- Plots randomly placed within strata
- Plots cruised and compared to cruise results of traditional/current inventory methods

Major Findings

- For most stands, UAS-stratified cruises yielded higher (worse) error statistics
- Potential time savings resulting from UAS plot optimization do not outweigh inadequate error statistics
 *For this particular analysis

	Net Vol (bf/ac)			
Unit	Traditional	Stratified	% Diff	
CAPRA U2	48,031	45,857	4.6	
OXBOW U2	28,644	26,868	6.4	
OXBOW U5	23,772	21,394	10.5	
WILDWOOD U1	32,360	32,167	0.6	
WILDWOOD U3	26,004	22,174	15.9	
WILDWOOD U4	25,107	15,498	47.3	

	SE%		
Unit	Traditional	Stratified	
CAPRA U2	7.4%	14.9%	
OXBOW U2	5.1%	9.3%	
OXBOW U5	9.1%	18.5%	
WILDWOOD U1	5.3%	13.7%	
WILDWOOD U3	12.3%	17.6%	
WILDWOOD U4	21.7%	14.0%	

Major Findings

- Height alone may not serve as a sufficient stratifier when using UAS
- Inclusion of a density or basal area metric may improve UAS stratification methods

Rov	v Labels 💌	Sum of TPA	Sum of BAC	Sum of VAC
=1		361.08	320	44108
	1	60.62	40	4514
	2	271.87	220	30770
	3	28.59	60	8824
Ξ2		969.13	720	109060
	4	233.81	220	35720
	5	287.88	180	23908
	6	447.44	320	49432
Ξ3		714.07	660	108978
	7	290.4	260	46272
	8	184.64	160	24092
	9	239.03	240	38614

Summary/Concluding Statements

- Cruise data collected using UAS height-based stratification was inferior to systematically-collected cruise data (for most stands)
- Improvements to UAS stratification methods are needed to yield a more accurate and operationally-feasible product
- Positive/beneficial learning experience

