Project Summary

Leaf Area Index Estimates to Inform Midrotation Treatments

Co-PIs: Rachel L. Cook, NCSU (lead), Aaron Weiskittel, UMaine, Mark Kimsey, U Idaho, Alicia Peduzzi, UGA Project Code CAFS.21.87

June 2025

Objectives

Research Plan

- Use LAI model to develop potential productivity and response maps in conjunction with soils and climate data (Continued)
- Apply LAI tools to Midrotation silvicultural decisions
- Assess operational level response to herbicide and/or variable rate fertilization
- Use canopy LAI to make Fertilizer Rate decisions (vs Random rate)
- Assess response in canopy LAI due to changes in understory LAI
- Use repeat LiDAR flights (and ground truth data) to assess individual tree height and volume response to treatments

Methods

Experimental Design

- Herbicide vs No Herbicide
- + Random application N (lb) + 10% P
 - 100
 - 200
 - 300
- OR: LAI-based rates of elemental N (lb/ac) + 10% elemental P

LAI	N Rate Ib/ac
>3.5	0
3.0-3.5	100
2.5-3.0	150
2.0-2.5	200
1.5-2.0	250
1.0-1.5	300

Treatments based on 1 ha grid

Study Locations

Methods

Treatments

Fert

Herb

Fert + Herb

Field data collection

Measurements taken:

- Diameter
- Height
- Height to live crown
- Understory metrics
 - total percentage of ground cover occupied by understory with living foliage
 - fraction evergreen and/or deciduous
 - max & mean heights

NC Variable Rate Understory LAI

NC Variable Rate Canopy LAI

Winter Canopy LAI: Fert application x Herbicide

Stand B: Deciduous Understory: Fert application x Herbicide

TX Variable Fert x Herb

Herbicide is making more difference in growth than Fert

Herbicide

No Herbicide

Results: LiDAR Competing vegetation height YST1

Herbicide

No herbicide

Competing Vegetation LAI YST1 LiDAR Satellite

Different species composition among stands (yaupon-evergreen vs blackberry- deciduous)

Mean Tree Basal Area Growth: Competing vegetation LAI and Fertilizer

Coefficient	p-value
Intercept	<0.01
Competing Vegetation LAI	0.72
Fertilizer Rate	0.21
Mean Basal Area YST1	< <mark>0.01</mark>
Stand:TXNorth3	<0.01
Stand:TXSouth1	0.88
Stand:TXSouth2	<0.0 <mark>1</mark>
Competing Vegetation * Fertilizer Rate	0.12

Looking Aheah: Timber and Urea Price Forecasting

What is the Risk vs Reward for Silviculture Treatments

Company Benefits

- Accessibility to LAI canopy layers
- Operational scale results from mid-rotation fertilization vs herbicide across soils and geology
- With time, ability to assess return on investment for: rates of fertilization and/or herbicide
- Determination of when/where LAI-based, variable rate fertilizer application can be beneficial.
- Combined with soils map and Site Index models: ability to estimate fertilizer response based on present canopy/understory conditions

Summary

- Study work ongoing
 - Continuing to collect data in the field
 - New LiDAR acquisition Dec 2025/Jan 2026
 - Continuous satellite imagery
- LAI and Deciduous Understory model improvements are ongoing
 - Evergreen understory model in collaboration with Manulife
- Integration of this work with soils and Site Index modeling

Stand A: Deciduous Understory: Fert application x Herbicide

