A Neural Network Approach to Generating Leaf Area Index Estimates Using the Sentinel-2 Satellite Record → Leaf Area Index Estimates to Inform Midrotation Treatments

Co-PIs: Rachel L. Cook, NCSU (lead), Aaron Weiskittel, UMaine, Mark Kimsey, U Idaho, Alicia Peduzzi, UGA Project Code CAFS.21.87 Rachel Cook presenting

Original Objectives

- Operationalize web interface with loblolly pine canopy "machine-learning" LAI model (MLAI)
- Expand to other regions and species for a national level LAI model for production forests
- Develop understory model to run in parallel with overstory model
- Use LAI model to develop potential productivity and response maps in conjunction with soils and climate data

Canopy LAI in Loblolly

- Sentinel-2 based, 10-20 m entire SEUS
- Also now adapted for Landsat archive ('84present)
- Annual LAI layers now in database
- Currently working with Okan to deploy in ArcGIS online
- Recent research (publishing 2023) w/ LiDAR ground truth suggests we could improve on performance of established linear models (e.g. neural networks, different veg. indices)

Deciduous Understory Quantification (Loblolly)

- Test plots in NC Herb/noHerb
- Uses seasonal differences in green-up timing
- Implemented in Google
 Earth Engine via Sentinel 2 and Landsat

Deciduous Understory at Continental Scale

0.6

0.0

2022 Decid. Understory imagery

DUnder Index

- Test production run for 3M
 ac in 2022
- Automated scene selection and local phenology optimization
- Ground truth program with partner Member orgs is ongoing

Loblolly LAI in Latin America

Ground LAI values vs. Landsat + S2 'Simple Ratio'

- Ground LAI taken from *P. taeda* measurement plots in Brazil+Argentina
- Other LA crops to try (e.g. *Eucalyptus*) but ground data currently too sparse.

LAI in other North American forests

- Success in adapting spruce/fir LAI model to Earth Engine
 - Can replicate Bhattarai et al. (2022) operationally
- Interest in second attempt at Pacific Northwest Douglas Fir, pending ground LAI data.
- (Results scattered after a series of hard drive failures)

Proposed Modifications – Experimental Plan

- Use LAI model to develop potential productivity and response maps in conjunction with soils and climate data (Continuted)
- Apply LAI tools to Midrotation silvicultural decisions
- Assess operational level response to herbicide and/or variable rate fertilization
- Use canopy LAI to make Fertilizer Rate decisions (vs Random rate)
- Assess response in canopy LAI due to changes in understory LAI
- Use repeat LiDAR flights (and ground truth data) to assess individual tree height and volume response to treatments

Experimental Design

- Herbicide vs No Herbicide •
 - Random application N (lb) + 10% P •
 - 100 ٠
 - 200 •
 - 300 ٠
 - LAI-based rates of elemental N (lb/ac) + 10% • elemental P
 - 0 .
 - 100 •
 - 150 •
 - 200 .
 - 250
 - 300 .

LAI	N Rate Ib/ac
>3.5	0
3.0-3.5	100
2.5-3.0	150
2.0-2.5	200
1.5-2.0	250
1.0-1.5	300

(10 x 10 m)

(100 x 100 m)

Treatments based on 1 ha grid

Study Locations

estry

Field data collection

Measurements taken:

- Diameter
- Height
- Height to live crown
- Understory metrics
 - total percentage of ground cover occupied by understory with living foliage
 - fraction evergreen and/or deciduous
 - max & mean heights

TX: 77 plots established pre-fertilization (Dec 2020)

Re-measured one and two growing seasons post-fertilization

2 years of growing season – Helicopter LiDAR acquisition

– 0 ×

Understory LAI 2022

No Herbicide

Preliminary Results 2020-2022 from LiDAR

• Where there was no herbicide, more fertilizer fed the competition

Initial LAI was related to Ht
growth (ft)

				Least
Level				Sq Mean
greater than 3.5	А			4.1346407
3.0 to 3.5	А	В		3.7642473
2.5 to 3.0		В		3.6896007
2.0 to 2.5		В		3.5482759
1.5 to 2.0			С	3.0415821
1 to 1.5			С	3.0046219

Height growth (ft) per N rate

		Least
Level		Sq Mean
0	Α	4.1605562
150	В	3.7106436
200	BC	3.4603196
300	C D	3.1935305
250	D	3.0157738

Dbh per N rate

				Least
Level				Sq Mean
300	А			9.3378484
250	E	В		8.6624108
200	E	В		8.6623012
150		С		8.1287476
0			D	7.5439520

DBH (in) per Fert App

		Least
Level		Sq Mean
random /	A	8.9993612
boutique	В	8.3461038
control	С	7.5439520

The point-cloud classified into individual trees

The point-cloud analyzed* to classify the location of tree stems.

Company Benefits

- Accessibility to LAI canopy layers
- Operational scale results from mid-rotation fertilization vs herbicide across soils and geology
- With time, ability to assess return on investment for: rates of fertilization and/or herbicide
- Determination of when/where LAI-based, variable rate fertilizer application can be beneficial.

