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Reflectance spectroscopy Justification
- Forest health management

» Reflected light from plants can help assess foliar quality.

= Foliar optical properties have been used to investigate finer details
from foliage and to detect diverse forest issues at different spatial scales
(e.g., drought, air pollution, fire, diseases, invasive species, etc.).
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Reflectance spectroscopy Objectives
- Tree stress response

Challenges remain to be explored in our understanding of
the ability of the hyperspectral approach in identifying
multiple stressors and/or diseases.

Research objectives:

Determine the ability of hyperspectral data 1) to estimate plant

functional traits in responses to different stress events, alone
and in combination and 2) to classify different abiotic and biotic
stress events.
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Hyperspectral phenotyping Methods
- |dentification of stress

Classifying stress using partial least squares-
discriminant analysis
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Hyperspectral phenotyping Major Findings
- Salt and Nutrient stress

CLASSIFICATION ACCURACY

Salt stress condition was

80 most accurately classified from

-0 spectra (94%), and modest
classification outputs were found

* for nutrient (67%) and bifactorial

50 conditions (60%).
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Classification Salt & Nutrient stress

Validation Accuracy: 0.60 (100 iterations)

Predicted

Predicted

Observed

2 3
1 40 4 0 0
2 3 40 0 0
3 0 0 33 4
4 1 0 3 32

Observed

2 3
1 8 2 1 0
2 2 8 0 1
3 0 0 4 5
4 0 0 4 2

1: Control
2: Nutrien

Major Findings

t stress

3: Salt stress

4: Salt stress & Nutrient stress

Calibration
Accuracy: 0.91

Validati

on

Accuracy: 0.60
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Hyperspectral phenotyping

— Stress diagnostic spectral regions

— Control
= Salt-stressed
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Major Findings

= Control
= Nutrient-stressed
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Future Plans

« Relate predictive leaf trait responses to hyperspectral
phenotyping outcomes to interpret the classification results.

— Two approaches, hyperspectral phenotyping and leaf trait
predictions, provide multiple layers of stress-specific information.

Hyperspectral phenotyping Leaf trait predictions
Assimilation rate Leaf Water Content
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