Continuing Project

Assessing & Mapping Regional Variation in Site Productivity

CAFS.19.75

Investigators: Rachel Cook (NCSU), Cristian Montes (UGA), Aaron Weiskittel (UM), Jeff Hatten (OSU), Mark Coleman (UI), Doug Jacobs (Purdue), Mark Kimsey (UI), Doug Maguire (OSU), Kim Littke (UW)

Presented by: Rachel Cook and Cristian Montes North Carolina State University and University of Georgia

What drives site productivity and how do we make predictions?

Objectives

- 1. Develop a consistent and biologically meaningful metric of potential site productivity
- 2. Relate soils, geology, and environmental variables to predict site productivity
- 3. Map across major forest regions

Center for Advanced Forestry Systems 2023 Meeting

We have *a lot* of historical and contemporary field study research...

.. especially related to fertilization:

Study site	Years active	Tree ages (yrs)	Elemental N application rates (kg ha ⁻¹)	Elemental P application rates (kg ha ⁻¹)	
RW13: Midrotation fertilization with rates of N and P	1984 – 1994	10 - 16	112, 224, 336	28, 56	
RW15: Additions of N+P, K, and micronutrients	1989 – 1999	9 - 25	224	56	
RW17: Fertilization x vegetation control at midrotation	1996 – 2002	9 - 22	224	56	
RW18: Optimal rates and frequencies of nutrient application	1998 – 2006	3 - 6	67, 134, 201, 269	7, 13, 20, 27	
RW19: Thinning x fertilization response	2006 – present	12-16	224	28	

2022 – Mapping response based on continuous variables

Major Depth Soil Code		Depth Drainage Code	Modifier 1: Nature of	Modifier 2: Nature of	Modifier 3: Limitations	Geo Code Pa c Prov		siographi ovince
	Group A Clay	(inche s)E P Excessive y Drained D Somewhat	d Dark surface	a Alfic	(A or B Horizon) w Ponded	Ai Dw Lb	AF	Atlantic Coastal Plain Elatwoods
	B Fine Loamy	0unknow n (0-20)Excessive y Drained10-5WWell Drained	y Silty	m Mica	Water f Floods (fluvic)	Am Au Ct	GF	Gulf Coastal Plain Flatwoods
	C Coarse Loamy	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	e Eroded	k Kaolinitic	I Lamella s Root limited	Fl Ch Vk	SC	Southern Coastal Plain
	D Spodic E Silty	4 20 – 40 S Somewhat Poorly Drained	r Rocky	p Plastic/	t (densic, u lithic, paralithic)	Yg Jk Cb	WG	Western Gulf Coastal Plain
-	F Deep Subsoil (Grossa	5 40 - 80 1 1 1 1 6 None V Very within Poorly	o Other or NA	i Siliceous	(<10, 10- 20, 20-40 in)	Wx Md Bb	LP	Mississippi Valley Loess Plain
	renic, > 40 in)	80 in Drained		I (sandy) o Other or NA	v Root infined 40-80 in q Restrictions within 40	Av Sa Cs	BP SH	Blackland Prairie Sandhills
-	Sand (> 80 in) H Histosol/				inches (fragic, cemented, plinthic)	Ms Fs Lo	MT	Mountains
L	Organic	Classificatior	based on	:	c Alkaline, calcareous	Gg Le Sh		Alluvium
	Site	Productivity Op "SPOT"	n Salt affected (natric)	Lm Sc Ba				
5	NSI				o Other or NA	Um Sr Mr Ui	Advance	N SEL

SPOT Code Coverage

- Soils in loblolly in native range
 - 35 million acres*
- Exact RW SPOT codes
 - 2.7 million acres (7% of total)
- SPOT code "scrabble"
 - 26 million acres (74% of total)

*Thomas, V.A., R.H. Wynne, J. Kauffman, W. McCurdy, E.B. Brooks, et al. 2021. Mapping thins to identify active forest management in southern pine plantations using Landsat time series stacks. Remote Sensing of Environment 252: 112127. doi: <u>10.1016/j.rse.2020.112127</u>.

Climate

- 30-yr averages
- 800 m resolution

VPD Max VPD Min PPT Temp max Temp min Temp mean Dew point mean

Random Forest Variable Importance

Site Index improving 0.5 ft per year

Site Index Distribution by SPOT code (ft)

Site Index Fertilizer Response by Spot Code

Site Index Fertilizer Response: Geology matters within NRCS soil series

SPOT model for site index predictions

SI_m ~ Major code + Drainage + Depth + Surface + Subsoil + Addn limitations + Geocode + Phys Prov

Next Steps: More Data! **USGS LiDAR for member plantations** & FIA data

USGS LiDAR coverage

Method developed thanks to member inventory data contributions

Submitted:

International Journal of Applied Earth Observation and Geoinformation Dominant height models from LiDAR validated with forest inventory, and age, can produce site productivity maps for loblolly pine (Pinus taeda L.) plantations in the southeastern US.

--Manuscript Draft--

Timeline - Updated

 ✓ Year 1 (2020): Data gathering and compilation of forest soil map units and available stand data

✓ Year 2-4 (2021-2023): Spatial modeling and model comparisons of site productivity and drivers

Year 4-5: Develop web-based interface of base and potential site productivity (additional funding from International Paper and Forest Service – in progress)

Year 5: 1) Incorporate LAI into productivity modeling, 2) Collect USGS data across SEUS for large-scale site index mapping

