### **Progress Report**

# Environmental Predictors of Form and Quality

CAFS.18.74

Cristian R. Montes, , Mark Porter, Stephen Kinane, Joseph Dahlen and Bronson P. Bullock University of Georgia

Presented by Cristian R. Montes







#### **Project Overview**

- Stem quality has huge impact in value but is a subjectively measured variable.
- Ground based mobile Lidar plot measurements.
- Develop algorithms to process Lidar diameters, heights and form.
- Relate form with environmental variables to evaluate likely value areas.





# Ground based mobile Lidar Data







## Developed algorithm to isolate stems from branches









#### **Current Progress**

Developed a method to Straighten Lidar data to avoid bias.

The methodology maximizes the kernel density in the direction of the measurement.







#### **Current Progress**

Developed several methods to fit circle and ellipses to terrestrial mobile lidar values.

Developed method to estimate height out of diameters measured along the height axis.

27.8

₹>

0

đ

10

Solves for radius and circle center over height, using a Hough transformation.

$$r_j = \sqrt{(x_{j,i} - x_c)^2 + (y_{j,i} - y_c)^2}$$

Uses the normal wrapped density function as part of the objective function to evaluate optimum fit

$$f(\theta) = \frac{1}{(-4\pi \log \rho)^{1/2}} \sum_{k=-\infty}^{\infty} exp\left(\frac{(\theta - \mu + 2\pi k)^2}{4\log \rho}\right)$$





# Taper equations fitted locally; parameters interpolated as a function of environmental predictors.

#### Spatial Variation in Kozak Taper Equation Parameters



Method uses generalized additive models with variance function dependent of environment and data density.

Allison Sheeks, in preparation



#### **Future Plans**

Pack algorithm for ground based lidar into an R package.

Test with other data (can we find phenotipic differences between genotypes?)

Wrap-up and deploy.



