Continuing Project

Enhancing Resistance to Fungal Pathogens in Commercial Tree Seedlings

CAFS 23.102

Dr. George Newcombe, University of Idaho Abigail Ferson-Mitchell, University of Idaho

Abigail Ferson-Mitchell

Justification

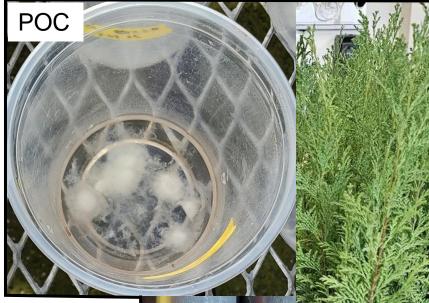
- Endophytes are nonpathogenic microsymbionts within plant tissues
- Competitive exclusion and antagonism occur among endophytes
- Bacillus is known to produce strong antimicrobial compounds and is commonly isolated from foliage and seeds

Objectives

To enhance survival of commercial susceptible and 'resistant' varieties of seedlings against virulent strains of devastating pathogens:

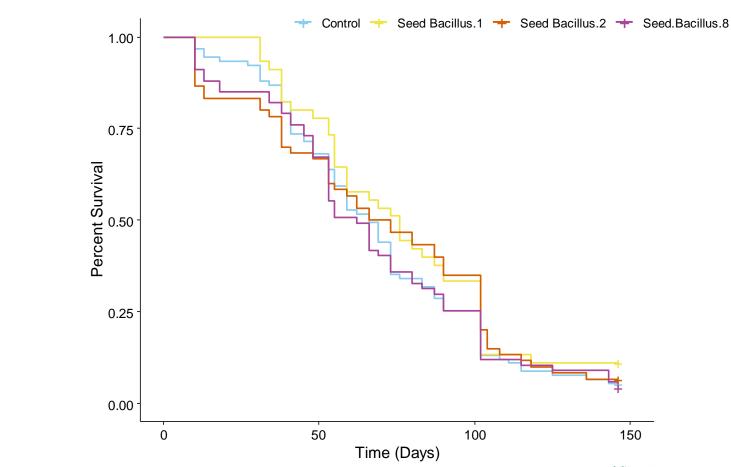
- 1. Acacia koa against Fusarium oxysporum f. sp. koae.
- 2. Pinus monticola against Cronartium ribicola.
- 3. Chamaecyparis lawsoniana against Phytophthora lateralis.

Endophyte Inoculation - Methods



Pathogen Inoculation - Methods

Data Collection - Methods



Major Findings - Koa

 Seed Bacillus #1 – no mortality for the first 30 days in FOXY trial

Seed Bacillus #2

Seed Bacillus #8

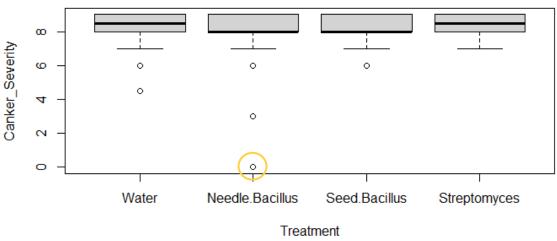
Images by Signee Storrud

FOXY #1405 **FOXY #77** FOXY #1613A Rep 1 Rep 2 Rep 3 Rep 1 Rep 2 Rep 3 Rep 1 Rep 2 Rep 3 B1 B2 **B3 B4** Melanoxylon AMF1 AMF2 AMF3 KSB1 KSB2 KS B8 KLB1 KLB2 KLF2 KLF4 KLF5 KLF7 KLF8 B1 **B3** Mangium **B**5 **B**6 Sterile DI Control

		- Key		
1	2	3	4	5
Strong Antagonism	Weak Antagonism	No Interaction	Weak Suppression	No Suppression

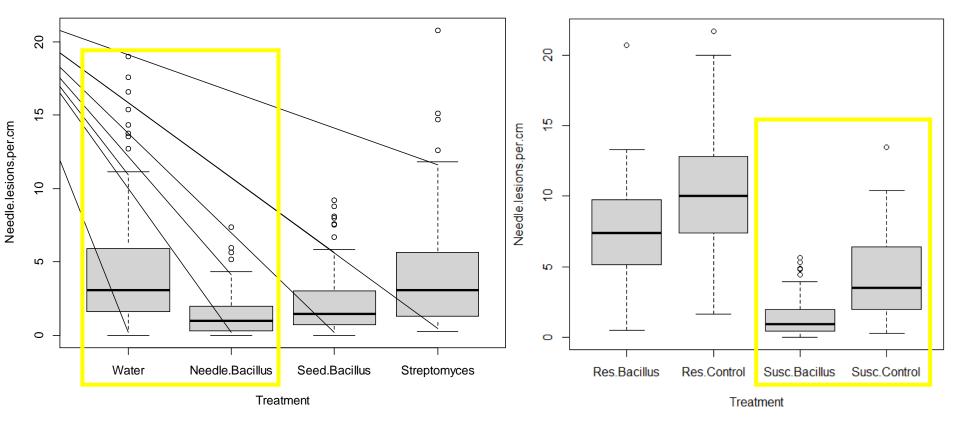
Major Findings - Koa

- One A. melanoxylon seed fungus 70% growth reduction of FOXY strains after four weeks.
- Four A. koa foliar fungi 56-76% growth reduction.
- Three seed *Bacillus* avg. 28% growth reduction.



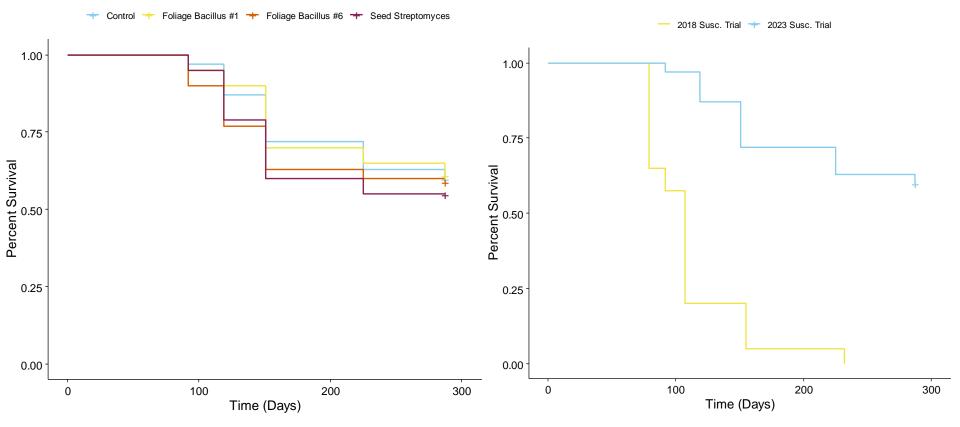
Water Agar

Major Findings - WWP


WWP 2022-2024 trial canker severity:

- 62% survival in needle Bacillus
- 57% survival in seed Bacillus
- 45% survival in Streptomyces
- 41% survival in the control.
- 4.5% symptomless and 8% low canker severity in the needle Bacillus treatment.

Major Findings - WWP



- WWP 2022-2024 trial: needle Bacillus and seed Bacillus significantly reduced needle lesion severity on a susceptible seed lot.
- WWP 2023-2024 trial: needle
 Bacillus significantly reduced
 needle lesion severity on
 susceptible and 'resistant' seed lots.

Major Findings - POC

- POC 2023 trial: Low mortality across all treatment groups. Anticipated mortality by 250 days based on prior trials with this seed lot.
- POC 2018 vs. 2023 control: Low mortality in the control despite prior trials with this seed lot, suggests homogenization.

Deliverables

- Dissertation and peer-reviewed publications in preparation.
- Protocol for screening and identifying beneficial endophytes for effectiveness against pathogens in the works.
- Improved understanding on how endophytes can be used to enhance the survival and success of both susceptible and resistant families.

Company Benefits

- Reducing the cost and effort for reforestation following a failed plantation.
 - Enhance survival of out-planted resistant varieties in areas impacted by low-medium-high pathogen loads.
 - Increase survival of 'susceptible' families that lack genes for resistance but have other desirable genetic traits that improve hardiness and yield.

Recommendations

 Prior to establishing a stand, consult a forest pathologist regarding site conditions and risk factors to determine what material to plant.

Acknowledgements:

Summary

- NSF CAFS
- USDA Forest Service
 - Dr. Richard Sniezko
 - Angelia Kegley
 - Evan Heck
 - Lee Riley & DGRC crews
- Hawaiian Agricultural Research Center
 - Dr. Nickolas Dudley
 - Michael Kaufmann
 - Jenna Lidua
- Oregon State University
 - Dr. Jared LeBoldus
 - Biz Stamm
 - Dr. Posey Busby
 - Melissa Vergara
- University of Idaho
 - Dr. Andrew Nelson
 - Signee Storrud
 - Berklund Family

- 2024 Koa trial with fungal endophytes is being prepared to begin June 2024, anticipated completion by October 2024.
- 2022-2024 WWP mortality is progressing; anticipated completion by September 2024.
- 2023-2024 WWP cankers are developing; stem symptom assessments beginning June 2024.
- 2024 POC mortality has begun and will continue to progress over the next 150 days.

