CAFS Continuing Project

Density Management Strategies for Enhancing Carbon Sequestration in U.S. Working Forests

CAFS. 23. 100

Mike Premer (UMaine), Eric Turnblom (UW), Kim Littke (UW), Rachel Cook (NCSU), Mark Kimsey (UI), Bronson Bullock (UGA), Lila Beck (UMaine)

Lila Beck, University of Maine June 11th, 2024

Justification

Density management will continue to be a method to achieve goals for a variety of objectives

PCT/CT are useful to have in our toolbox

Commodity production, Crop tree release, C sequestration, Stand composition, Forest health, Wildlife habitat, Aesthetics, Structure, etc.

Justification

Little is known about the causal factors of the magnitude and duration of response

f (tree size, light, water, nutrient availability, competition)

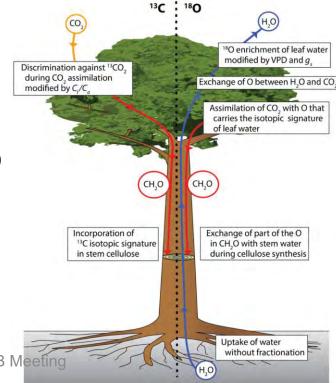
How much? What is the threshold?

Justification

van der Sleen et al. (2017).

Tree-ring isotopes* and Site Water Availability (light and water)

Novel tools of quantifying potential water use efficiency and a *promising solution* to site-specific density management regimes


*Atoms that do not decay, C¹³ and O¹⁸

If resources are not limiting, trees are "picky" and don't utilize the heavier

isotopes of C and O

As resources become limiting, trees will "use what is available" If light limited, drop in ¹³C, if water limited, drop in ¹⁸O

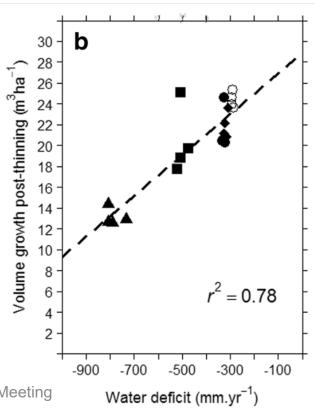
This is recorded in the tree ring tissue each growing season

Center for Advanced Forestry Systems 2024 IAB Meetin

Site water availability, leaf area, and productivity

Continued success in application of SWA estimators (WD/WDI)

Predicting thinning response in Radiata pine in Chile (Ojeda et al. 2018)


Dominant height and leaf area in loblolly pine in the SE (Koirala et al. 2021; Kinane et al. 2022)

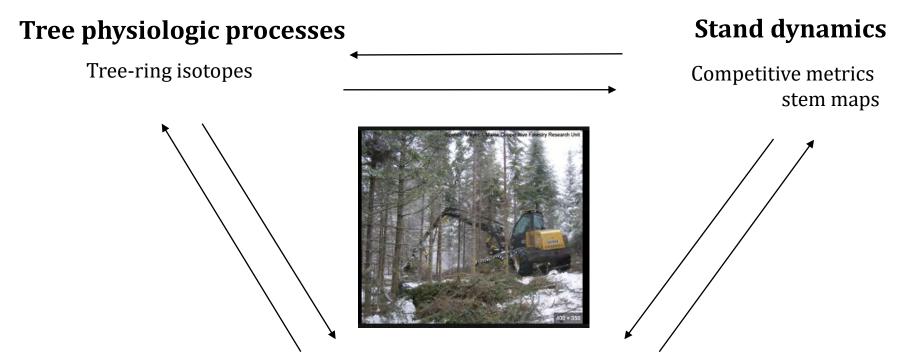
Diameter increment in white spruce in Maine (Premer, unpublished)

Total volume of Eucalyptus in Brazil (Scolforo et al. 2019)

A continuous composite variable that is compatible across regions

Project Objectives

- 1. Quantify **causal mechanisms** of stem growth response (or lack of) to variations in thinning **intensity**, **timing**, and **site variables** through sampling and analysis of tree ring **stable isotopes** (δ^{13} C and δ^{18} O) with regional long-term datasets
- 2. Link remote sensing composite **estimates of productivity**, (e.g., cumulative monthly timesteps of water availability) with thresholds of **thinning response** across the hydrologic gradient of sites and patterns in stable isotopes
- 3. Develop cross-regional silvicultural **thinning guidelines** and **geospatial tools** to aid decision support in commercial forest operations.


Each working forest region has an intact experimental thinning network Type I - UW CTRN - UMaine PPDM - UI Red spruce Douglas fir Ponderosa pine RW-19 - NCSU and VPI C x D - UGA Loblolly pine

Methods

Project approach – three pronged

Remote sensing data, soil samples

Site productivity and hydrologic flux

Methods

Project approach – three pronged

Tree physiologic processes

Tree-ring isotopes

2023-2024

6 CTRN (UM)

- 1 Thinned Plot and 1 Control Plot per installation
 - Core 20* trees per installation, 1 per diameter distribution quintile
 - RS, 10 at each plot (control/treatment)
 - Core samples will be processed pre-harvest, and 5-10-15-20 years post treatment (5 samples per tree, if possible)
 - Lab processing at UMaine and Columbia University

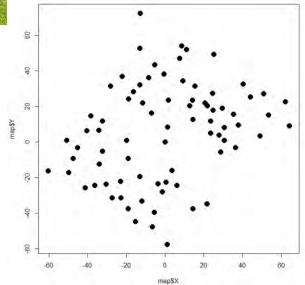
2024 6 SMC Type I (UW), 6 RW-19 (NCSU)

- 1 Thinned Plot and 1 Control Plot per installation
 - Core 20 trees per installation, 1 per diameter distribution quintile

2025 6 C x D (UGA), 6 PPDM (UI)

- 1 Thinned Plot and 1 Control Plot per installation
 - Core 20 trees per installation, 1 per diameter distribution quintile

Methods


Project approach – three pronged

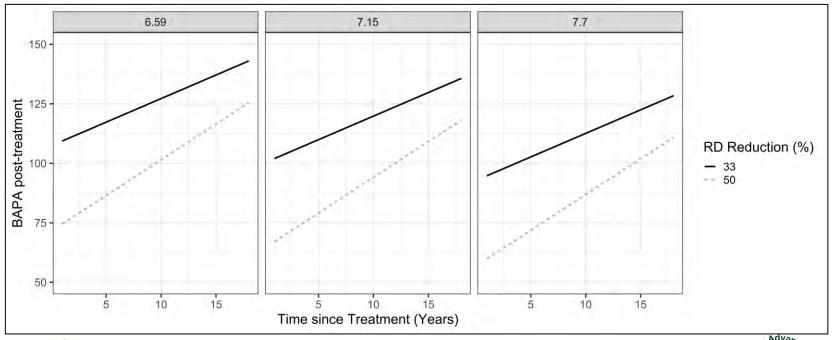
Stand dynamics

Integrate records from long-term databases

- Stand structure
- Competitive metrics
 (spatially explicit tree neighborhoods)

Center for Advanced Forestry Systems 2024 IAB Meeting

Preliminary Findings

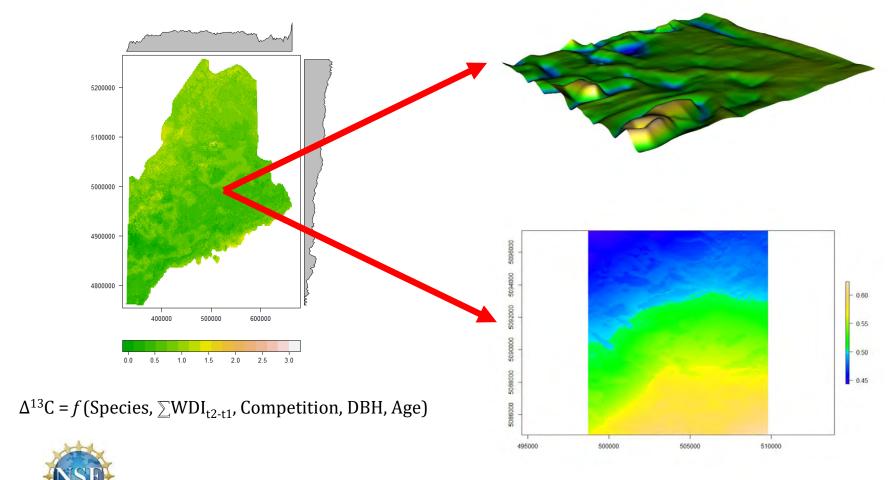


Preliminary Findings

Thinning response greater on sites with less water surplus

By 15 years, 10-12 ft² difference in basal area between "dry" and "wet" sites

Everywhere in Maine is wet.



Deliverables

Integration of processes across the tree, stand, and site scales

...C based forest management - when does tree slow down pulling C from atmosphere?

Company Benefits

Silvicultural guidelines and geospatial tools of treatment priority and response

Towards site-specific silviculture – "should I open the stand up a bit more?..."

Leveraging long-term, cooperative dataset with emerging technologies

Quantifying C sequestration and tools for C based management

The approach can be extended to a variety of applications

Next Steps

5 of 6 CTRN sites have been sampled

Isotope cores are being processed-samples to be sent to Columbia University

Analysis to be completed this fall

Increment borers sent to UW

Summary

- Density management will continue to be a useful tool in our toolbox but more research is needed to optimize treatments
- Using new technology while leveraging long-term datasets to develop site-specific thinning regimes has tremendous value
- C based forest management
- This approach can be extended to other areas of future research (M/CSP, nutrition, tree improvement, species migration)

Thank you. Questions/Comments/Criticisms?

lila.beck@maine.edu

