A Neural Network Approach to Generating Leaf Area Index Estimates Using the Sentinel-2 Satellite Record → Leaf Area Index Estimates to Inform Midrotation Treatments

Co-PIs: Rachel L. Cook, NCSU (lead), Aaron Weiskittel, UMaine, Mark Kimsey, U Idaho, Alicia Peduzzi, UGA Project Code CAFS.21.87 Andrew Trlica presenting

Objectives

Modified Plan

- Use LAI model to develop potential productivity and response maps in conjunction with soils and climate data (Continued)
- Apply LAI tools to Midrotation silvicultural decisions
- Assess operational level response to herbicide and/or variable rate fertilization
- Use canopy LAI to make Fertilizer Rate decisions (vs Random rate)
- Assess response in canopy LAI due to changes in understory LAI
- Use repeat LiDAR flights (and ground truth data) to assess individual tree height and volume response to treatments

Methods

Canopy LAI in Loblolly

- Use Earth Engine to produce wide-scale LAI estimates
 - Sentinel-2 10m
 - Landsat 7/8/9 30m
- LAI model
 improvements
 ongoing

Methods

Deciduous Understory Quantification (Loblolly)

- Imagery based in EE like LAI
- Uses seasonal differences in green-up timing
 - Spring vs Winter

Methods

Experimental Design

- Herbicide vs No Herbicide
- + Random application N (lb) + 10% P
 - 100
 - 200
 - 300
- OR: LAI-based rates of elemental N (lb/ac) + 10% elemental P

LAI	N Rate Ib/ac
>3.5	0
3.0-3.5	100
2.5-3.0	150
2.0-2.5	200
1.5-2.0	250
1.0-1.5	300

Treatments based on 1 ha grid

Study Locations

Methods

Field data collection

Measurements taken:

- Diameter
- Height
- Height to live crown
- Understory metrics
 - total percentage of ground cover occupied by understory with living foliage
 - fraction evergreen and/or deciduous
 - max & mean heights

Canopy LAI response

Canopy LAI response

Deciduous Understory response

NC Variable Rate plots, mean DUnder Index

Consistent decrease in DUnder Index postherbicide

Herb

NoHerb

Deciduous Understory response

Yaupon (evergreen) understory may not be apparent with this technique

Canopy LAI + Decid. Understory over time

NC VarRate - Decid. Understory '19-'24

NC VarRate - Canopy LAI '19-'24

Major Findings Sentinel-2: Canopy LAI + Decid. Understory over time

- Significant interannual variation
 - Cloud cover
 - Image quality/selection
 - Seasonal timing

Canopy LAI

Major Findings Sentinel-2: Canopy LAI + Decid. Understory over time

TX Variable Rate plots, Decid Index vs. 2024 LAI

- NC: Decrease in LAI with greater Understory (detection
 - artifact?)
- TX: No evident relationship LAI ~ DU

100 150

200 250

Major Findings Sentinel-2: Canopy LAI + Decid. Understory over time

TX Variable Rate plots, starting LAI vs. BAI

- TX: LAI 1-year postfertilization did not clearly predict BAI over the next 3 years
 - Preliminary, needs closer analysis of available field data

Company Benefits

- Accessibility to LAI canopy layers
- Operational scale results from mid-rotation fertilization vs herbicide across soils and geology
- With time, ability to assess return on investment for: rates of fertilization and/or herbicide
- Determination of when/where LAI-based, variable rate fertilizer application can be beneficial.
- Combined with soils map and Site Index models, ability to estimate fertilizer response based on present canopy/understory conditions

Summary

- Study work ongoing
 - Continuing to collect data in the field (TX 3 years post-treat; NC 2 years post treat)
 - Helicopter and aerial LiDAR acquisitions
 - Continuous satellite imagery
- A full analysis of field and RS data forthcoming by PhD student Ivan Raigosa-Garcia (NCSU)
- LAI and Deciduous Understory model improvements are ongoing
 - Evergreen understory model?
- Integration of this work with soils and Site Index modeling could unlock efficiencies in silvicultural planning over a broad swath of potential pine land.

