Continuing Project

Assessing and mapping regional variation in potential site carrying capacity

CAFS 19.75

Mark Kimsey, University of Idaho Aaron Weiskittel, University of Maine Rachel Cook, North Carolina State University Douglas Mainwaring, Oregon State University Eric Turnblom, University of Washington

Presenters: Mark Kimsey and Jaslam Poolakkal

Objectives

- 1) Synthesize a nationwide forest inventory database from publicly available data and from CAFS members,
- 2) Standardize maximum carrying capacity modeling, and
- Create efficiencies for multi-regional forest management organizations by providing consistent, species-site-silviculturally sensitive, wall-to-wall spatial models of SDImax for commercial species of the United States.

Justification

- Understocked stands underutilize site resources and will not reach maximum potential productivity
- Overstocked stands are slow to develop and susceptible to wildfire, drought and insect outbreaks due to competition for limited resources.
- To date, forest carrying capacity research is regionalized, utilizes multiple modeling approaches, and not universally available spatially across the US

Data

Industry

٠

- Topography extraction from 30m DEM • (e.g., Slope, Aspect, Topographic wetness index, Solar radiation)
- ClimateNA (Annual, Month, Season) •
- Geology and Soil layer (SGMC & • gSSURGO geodatabase)

- Based on feedback from CAFS members, four hardwood and two softwood species were selected for SDImax modeling
 - Red/Sugar maple, Paper/Yellow birch, E. White pine, Balsam fir
 - Widespread and predominant in most stands
- Despite dominant presence, species purity rarely present
- Basis for use of forest types used in prior SDImax modeling

Center for Advanced Forestry Systems 2024 IAB Meeting

Center for Advanced Forestry Systems 2024 IAB Meeting

Modeling Approach

Methods – NE US Modeling Update

• Data Cleaning – Model Sensitivity:

Missing expansion factors, at least 10 TPA, QMD at least 2-inch, questionable & missing data removed

• Variable Selection:

Based on Minimum Redundancy Maximum Relevance (MRMR) algorithms

• Fitting Quantile GBM:

The quantile GBM model minimizes deviations between predicted and observed quantiles, ensuring robust estimations at the 95th percentile of the size-density relation.

Model Summary:

f

Major Findings - NE US

Quantile regression loss function can predict a specified percentile

Quantile

$\sum_{k \in M} \int w imes QuantileAlpha imes (y-f) \qquad \qquad ext{for } y > f \qquad ext{.} y ext{ is a true response}$	
$f = \int w imes (1 - QuantileAlpha) imes (f - y) ext{for } y \leq f egin{array}{c} \bullet f ext{ is a predicted rest} \\ \bullet w ext{ is weight} \end{array}$; ponse

distribution = "quantile", quantile_alpha =.95

Where:

	number_of_int	model_size_in_						
number_of_trees	ernal_trees	bytes	min_depth	max_depth	mean_depth	min_leaves	max_leaves	mean_leaves
78	78	30855	5	5	5	15	32	26.3797

Consistent pinball loss (~28) in training and cross-validation signifies robust quantile estimation.

Key Predictors

QMD	Eco region	ADI	soc20_50
ABBA_BAprop	Elevation	PAS_sp	soc0_5
ACRU_BAprop	Forest type	CMI_wt	aws0_5
BEPA_BAprop	Topographic wetness index	MSP	aws100_150
PIST_BAprop	sin_Aspect	DD_0_at	depreslay
BEAL2_BAprop	cos_Aspect	RH_at	
ACSA3_BAprop	tS_sA	DD18_at	
other_hard BAprop	tS_cA		
other_soft Baprop			
Dominant Species			

SDImax estimates with Species and Forest type info.

SDImax estimates for 100% Red Maple

SDImax estimates for 100% Sugar Maple

SDImax(QMD=10)

- <280</p>
- 280-300
- 300-350
- 350-530

Center for Advanced Forestry Systems 2024 IAB Meeting

SDImax estimates for 100% Paper Brich

4000 min: 210 q25: 230 mean: 258 q50: 248 3000 q75: 282 Number of Stand q95: 319 max: 476 2000 1000 0 150 250 350 450 Paper Birch SDImax

SDImax(QMD=10)

- <250</p>
- 250-300
- 300-400
- 400-477

Center for Advanced Forestry Systems 2024 IAB Meeting

SDImax estimates for 100% Eastern White Pine

SDImax estimates for 100% Balsam Fir

Balsam Fir SDImax

0 └─

Number of Stand

Center for Advanced Forestry Systems 2024 IAB Meeting

SDImax estimates for 100% Other Hardwoods

SDImax estimates for 100% Other Softwoods

Athabasca Athabasca SASKATCHEWAN CANADA SASKATCHEWAN CANADA Lake Winnipeg

SH

Regional model python script available for GIS integration

Company Benefits

- Understand key drivers of forest carrying capacity across the US
- Identification of optimal planting or thinning residual densities for a company management objective as a function of:
 - Species composition
 - Site resources
 - Silvicultural treatments (SE US only)
- Consistent methodology/platform for identifying and managing forest density across multi-regional land holdings

Recommendations

□ CAFS members begin evaluating regional models, we need operational feedback

- Leverage existing inventory data and regional models to:
- Determine if model is correctly identifying self-thinning stands, or is under/over predicting SDImax
- Leverage CFI plots to identify growth trajectory (QMD/TPA) toward predicted SDImax
- Determine if trajectory under/over shoots predicted SDImax

Summary

Next Steps

- Finalize loblolly pine model with most current FPC soils database
- Finalize northeast model with CAFS member input from this meeting
- Re-run PNW model using standardized methods used for INW, SE, NE •
- Create Klamath/Siskiyou model
- Given time, evaluate additional species assemblages in SE •
- Provide CAFS members with Python SDImax model script for operational ٠ feedback
- Continue building zero-coded web app for regional SDImax models
- Begin developing projected climate SDImax models

